Partial solutions to Stochastic Calculus and Financial Applications by J. Michael Steele

Niuniu Zhang

September 10, 2023

Problem (Exercise 6.1).

Proof. (i) We have

$$
\begin{equation*}
\operatorname{Var}\left[\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right]=\mathbb{E}\left[\left(\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right)^{2}\right]-\left(\mathbb{E}\left[\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right]\right)^{2} \tag{1}
\end{equation*}
$$

Since $\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}$ is a martingale, by property of martingale, we know it must has zero expectation, that is

$$
\begin{equation*}
\operatorname{Var}\left[\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right]=\mathbb{E}\left[\left(\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right)^{2}\right] \tag{2}
\end{equation*}
$$

By Ito's Isometry, we have

$$
\begin{align*}
\mathbb{E}\left[\left(\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right)^{2}\right] & =\mathbb{E}\left[\int_{0}^{t}\left|B_{s}\right| d s\right] \tag{3}\\
& =\int_{0}^{t} \mathbb{E}\left|B_{s}\right| d s \tag{4}\\
& =\int_{0}^{t}\left(\int_{-\infty}^{\infty}|x| \cdot \frac{1}{\sqrt{2 \pi s}} \cdot \exp \left(-x^{2} / 2 s\right) d x\right) d s \tag{5}\\
& =2 \int_{0}^{t}\left(\int_{0}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi s}} \cdot \exp \left(-x^{2} / 2 s\right) d x\right) d s \tag{6}\\
& =\frac{2}{\sqrt{2 \pi}} \int_{0}^{t} \sqrt{s} d s \tag{7}\\
& =\frac{2}{\sqrt{2 \pi}} \cdot \frac{2}{3} \cdot t^{3 / 2}=\frac{2 \sqrt{2}}{3 \sqrt{\pi}} t^{3 / 2} \tag{8}
\end{align*}
$$

so that

$$
\begin{equation*}
\operatorname{Var}\left[\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right]=\frac{2 \sqrt{2}}{3 \sqrt{\pi}} t^{3 / 2} \tag{9}
\end{equation*}
$$

(ii) Similarly, we have

$$
\begin{equation*}
\operatorname{Var}\left[\int_{0}^{t}\left(B_{s}+s\right)^{2} d B_{s}\right]=\mathbb{E}\left[\left(\int_{0}^{t}\left(B_{s}+s\right)^{2} d B_{s}\right)^{2}\right] \tag{10}
\end{equation*}
$$

then Ito's Isometry implies that

$$
\begin{align*}
\mathbb{E}\left[\left(\int_{0}^{t}\left(B_{s}+s\right)^{2} d B_{s}\right)^{2}\right] & =\mathbb{E}\left[\int_{0}^{t}\left(B_{s}+s\right)^{4} d s\right] \tag{11}\\
& =\int_{0}^{t} \mathbb{E}\left[\left(B_{s}+s\right)^{4}\right] d s \tag{12}\\
& =\int_{0}^{t} \mathbb{E}\left[4 s^{3} B_{s}+6 s^{2} B_{s}^{2}+4 s B_{s}^{3}+B_{s}^{4}+s^{4}\right] d s \tag{13}\\
& =\int_{0}^{t} 6 s^{3}+3 s^{2}+s^{4} d s \tag{14}\\
& =\frac{t^{5}}{5}+\frac{3 t^{4}}{2}+t^{3} \tag{15}
\end{align*}
$$

so that

$$
\begin{equation*}
\operatorname{Var}\left[\int_{0}^{t}\left(B_{s}+s\right)^{2} d B_{s}\right]=\frac{t^{5}}{5}+\frac{3 t^{4}}{2}+t^{3} \tag{16}
\end{equation*}
$$

as desired.

Problem (Exercise 8.2).

Proof. Define the function $f \in C^{1,2}\left(\mathbb{R}^{+}, \mathbb{R}\right)$

$$
\begin{equation*}
f(t, x):=x h(t) \tag{17}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\frac{\partial f}{\partial x}=h(t) \quad \frac{\partial f}{\partial t}=x h^{\prime}(t) \quad \frac{\partial^{2} f}{\partial x^{2}}=0 \tag{18}
\end{equation*}
$$

By Ito's formula, we get

$$
\begin{align*}
h(t) B_{t}=f\left(t, B_{t}\right) & =f\left(0, B_{0}\right)+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, B_{s}\right) d B_{s}+\int_{0}^{t} \frac{\partial f}{\partial t}\left(s, B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, B_{s}\right) d s \tag{19}\\
& =0+\int_{0}^{t} h(s) d B_{s}+\int_{0}^{t} h^{\prime}(s) B_{s} d B_{s}+0 \tag{20}\\
& =\int_{0}^{t} h(s) d B_{s}+\int_{0}^{t} h^{\prime}(s) B_{s} d B_{s} \tag{21}
\end{align*}
$$

which proves the claim.

Problem (Exercise 8.4).

Proof. (a) Assume the form $f(t, x)=\phi(t) \psi(x)$. First, we separate the variables, consider

$$
\begin{equation*}
0=f_{t}+\frac{1}{2} f_{x x}=\phi^{\prime}(t) \psi(x)+\frac{1}{2} \phi(t) \psi^{\prime \prime}(x)=2 \phi^{\prime}(t) \psi(x)+\phi(t) \psi^{\prime \prime}(x) \tag{22}
\end{equation*}
$$

Rearrange the term and denote the separation constant as $-K$, we get

$$
\begin{equation*}
\frac{-2 \phi^{\prime}(t)}{\phi(t)}=\frac{\psi^{\prime \prime}(x)}{\psi(x)}=-K \tag{23}
\end{equation*}
$$

so that

$$
\begin{equation*}
\phi^{\prime}(t)=\frac{K}{2} \cdot \phi(t) \quad \psi^{\prime \prime}(x)+K \cdot \psi(x)=0 \tag{24}
\end{equation*}
$$

There are three cases depending on the value of K, consider:
(i) If $K=0$, we get

$$
\begin{align*}
\psi^{\prime \prime}(x) & =0 \Longrightarrow \psi(x)=a+b x \tag{25}\\
\phi^{\prime}(t) & =0 \tag{26}
\end{align*}
$$

for some constant $a, b, c \in \mathbb{R}$ and

$$
\begin{equation*}
M_{t}=c\left(a+b B_{t}\right) \tag{27}
\end{equation*}
$$

(ii) If $K>0$, then we get

$$
\begin{equation*}
\psi(x)=a \cos (\sqrt{\lambda} x)+b \sin (\sqrt{\lambda} x) \quad \phi(t)=c \exp \left(\frac{k}{2} \lambda t\right) \tag{28}
\end{equation*}
$$

for some constant a, b, c, then

$$
\begin{equation*}
M_{t}=c\left(a \cos \left(\sqrt{\lambda} B_{t}\right)+b \sin \left(\sqrt{\lambda} B_{t}\right)\right) \exp \left(\frac{k}{2} \lambda t\right) \tag{29}
\end{equation*}
$$

(iii) If $K<0$, then we get

$$
\begin{equation*}
\psi(x)=a \cosh (\sqrt{-\lambda} x)+b \sinh (\sqrt{-\lambda} x) \quad \phi(t)=c \exp \left(\frac{k}{2} \lambda t\right) \tag{30}
\end{equation*}
$$

for some constant a, b, c, so that

$$
\begin{equation*}
M_{t}=c\left(a \cosh \left(\sqrt{-\lambda} B_{t}\right)+b \sinh \left(\sqrt{-\lambda} B_{t}\right)\right) \exp \left(\frac{k}{2} \lambda t\right) \tag{31}
\end{equation*}
$$

which completes the proof.
(b) Apply Taylor's theorem up to 3rd order at zero, we get

$$
\begin{equation*}
M_{t}=1+B_{t} \cdot \alpha+\frac{1}{2}\left(B_{t}^{2}-t\right) \cdot \alpha^{2}+\frac{1}{6}\left(B_{t}^{3}-3 t B_{t}\right) \cdot \alpha^{3}+\cdots \tag{32}
\end{equation*}
$$

It follows that the first four of $H_{k}(t, x)$ are

$$
\begin{equation*}
H_{0}(t, x)=1 \quad H_{1}(t, x)=x \quad H_{2}(t, x)=\frac{1}{2}\left(x^{2}-t\right) \quad H_{3}(t, x)=\frac{1}{6}\left(x^{3}-3 t x\right) \tag{33}
\end{equation*}
$$

Lastly, fix $k \in \mathbb{Z}^{+}$, we show $M_{t}(k)=H_{k}\left(t, B_{t}\right)$ is a martingale. We exploit the fact that M_{t} is a martingale. For $s<t$, we have

$$
\begin{align*}
M_{s}=\mathbb{E}\left[M_{t} \mid F_{s}\right] \Longrightarrow \sum_{k=0}^{\infty} \alpha^{k} H_{k}\left(s, B_{s}\right) & =\mathbb{E}\left[\sum_{k=0}^{\infty} \alpha^{k} H_{k}\left(t, B_{t}\right) \mid F_{s}\right] \tag{34}\\
& =\sum_{k=0}^{\infty} \alpha^{k} \mathbb{E}\left[H_{k}\left(t, B_{t}\right) \mid F_{s}\right] \tag{35}
\end{align*}
$$

It follows that

$$
\begin{equation*}
\mathbb{E}\left[H_{k}\left(t, B_{t}\right) \mid F_{s}\right]=H_{k}\left(s, B_{s}\right) \tag{36}
\end{equation*}
$$

which proves the claim, as desired.

Problem (Exercise 8.5).

Proof. (a) First, we show f is Laplacian for $(x, y, z) \neq 0$. Consider

$$
\begin{equation*}
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}} \tag{37}
\end{equation*}
$$

in which

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x^{2}}=\frac{2 x^{2}-y^{2}-z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \quad \frac{\partial^{2} f}{\partial y^{2}}=\frac{-x^{2}+2 y^{2}-z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \quad \frac{\partial^{2} f}{\partial z^{2}}=\frac{-x^{2}-y^{2}+2 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}} \tag{38}
\end{equation*}
$$

Note that the above numerators sum up to zero, so that we have $\Delta f=0$ and f is harmonic. By Proposition 8.3, we immediately have M_{t} to be a local martingale.
(b) Denote

$$
\begin{equation*}
\overrightarrow{B_{t}}=\left(B_{t}^{1}, B_{t}^{2}, B_{t}^{3}\right) \in \mathbb{R}^{3} \tag{39}
\end{equation*}
$$

where $B_{t}^{i} \sim \mathcal{N}(0, t)$ for each $i \in\{1,2,3\}$. Observe

$$
\begin{align*}
\mathbb{E}\left(M_{t}^{2}\right)=\mathbb{E}\left(f\left(\overrightarrow{B_{t}}\right)^{2}\right) & =\mathbb{E}\left(\left(\frac{1}{\left.\left.\sqrt{{B_{t}^{1^{2}}+B_{t}^{2^{2}}+B_{t}^{3^{2}}}^{2}}\right)^{2}\right)}\right.\right. \tag{40}\\
& =\mathbb{E}\left(\frac{1}{\left.{B_{t}^{1^{2}}+{B_{t}^{2}}^{2}+B_{t}^{3^{2}}}^{2}\right)}\right. \tag{41}
\end{align*}
$$

then with spherical coordinates, we get

$$
\begin{align*}
\mathbb{E}\left(\frac{1}{B_{t}^{1^{2}}+B_{t}^{2^{2}}+B_{t}^{3^{2}}}\right) & =\frac{1}{(\sqrt{2 \pi t})^{3}} \iiint_{\mathbb{R}^{3}} \frac{1}{x^{2}+y^{2}+z^{2}} \cdot \exp \left(-\frac{x^{2}+y^{2}+z^{2}}{2 t}\right) d V \tag{42}\\
& =\frac{1}{(\sqrt{2 \pi t})^{3}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \rho^{2} \sin \varphi \cdot \frac{1}{\rho^{2}} \cdot \exp \left(-\frac{\rho^{2}}{2 t}\right) d \rho d \theta d \varphi \tag{43}\\
& =\frac{1}{(\sqrt{2 \pi t})^{3}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \sin \varphi \cdot \exp \left(-\frac{\rho^{2}}{2 t}\right) d \rho d \theta d \varphi \tag{44}\\
& =\frac{2 \pi}{(\sqrt{2 \pi t})^{3}} \int_{0}^{\pi} \int_{0}^{\infty} \sin \varphi \cdot \exp \left(-\frac{\rho^{2}}{2 t}\right) d \rho d \varphi \tag{45}\\
& =\frac{4 \pi}{(\sqrt{2 \pi t})^{3}} \int_{0}^{\infty} \exp \left(-\frac{\rho^{2}}{2 t}\right) d \rho \tag{46}\\
& =\frac{4 \pi}{(\sqrt{2 \pi t})^{3}} \cdot \sqrt{\frac{\pi t}{2}}=\frac{4 \pi}{\sqrt{2 \pi t}} \cdot \frac{\sqrt{2 \pi t}}{2} \cdot \frac{1}{2 \pi t}=\frac{1}{t} \tag{47}
\end{align*}
$$

which proves the claim.
(c) For the sake of contradiction, suppose that M_{t} is a martingale, then given $s<t$, we have

$$
\begin{equation*}
\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s} \tag{48}
\end{equation*}
$$

Consider the convex function $\varphi(x)=x^{2}$, then Jensen's inequality implies that

$$
\begin{equation*}
\mathbb{E}\left[M_{t}^{2} \mid F_{s}\right] \geq\left(\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]\right)^{2}=M_{s}^{2} \tag{49}
\end{equation*}
$$

Take expectation of both sides, part (b) implies that

$$
\begin{equation*}
\mathbb{E} M_{t}^{2} \geq \mathbb{E} M_{s}^{2} \Longrightarrow \frac{1}{t} \geq \frac{1}{s} \tag{50}
\end{equation*}
$$

However, since we set $s<t$, the above is absurd, contradiction.

Problem (Exercise 8.3).

Proof. (a) By Cauchy-Riemann equation, we have

$$
\begin{align*}
& u_{x}-v_{y}=0 \Longrightarrow u_{x x}-v_{y x}=0 \tag{51}\\
& u_{y}+v_{x}=0 \Longrightarrow u_{y y}+v_{x y}=0 \tag{52}
\end{align*}
$$

Sum up the two equations, we get

$$
\begin{equation*}
\Delta u=u_{x x}+u_{y y}=0 \tag{53}
\end{equation*}
$$

so that u is harmonic. Similarly, we have

$$
\begin{align*}
& u_{x}-v_{y}=0 \Longrightarrow u_{x y}-v_{y y}=0 \tag{54}\\
& u_{y}+v_{x}=0 \Longrightarrow u_{y x}+v_{x x}=0 \tag{55}
\end{align*}
$$

so that minus the two yields

$$
\begin{equation*}
\Delta v=v_{x x}+v_{y y}=0 \tag{56}
\end{equation*}
$$

and v is harmonic. Now, we decompose the two analytic functions by Euler's formula
(i) Since $\exp (z)=e^{x+i y}=e^{x}(\cos y+i \sin y)$, then we obtain

$$
\begin{equation*}
\operatorname{Re}(\exp (z))=e^{x} \cos y \quad \operatorname{Im}(\exp (z))=e^{x} \sin y \tag{57}
\end{equation*}
$$

(ii) Note that

$$
\begin{align*}
z \exp (z) & =(x+i y) e^{x}(\cos y+i \sin y) \tag{58}\\
& =x e^{x} \cos y+i x e^{x} \sin y+i y e^{x} \cos y-y e^{x} \sin y \tag{59}
\end{align*}
$$

then we get

$$
\begin{equation*}
\operatorname{Re}(z \exp (z))=e^{x}(x \cos y-y \sin y) \quad \operatorname{Im}(z \exp (z))=e^{x}(x \sin y+y \cos y) \tag{60}
\end{equation*}
$$

as desired.
(b) First, we decompose the analytic function $f(z)=z^{2}$. Consider

$$
\begin{equation*}
f(z)=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y) \tag{61}
\end{equation*}
$$

then it follows that $\operatorname{Re}(f)=u(x, y)=x^{2}-y^{2}$ is harmonic from part (a). Consequently, we have $X_{t}:=u\left(\vec{B}_{t}\right)$ as a local martingale with $X_{0}=4$. Define the stopping times

$$
\begin{equation*}
\tau_{1}=\inf \left\{t: X_{t}=1\right\} \quad \tau_{5}=\inf \left\{t: X_{t}=5\right\} \tag{62}
\end{equation*}
$$

and $\tau=\tau_{1} \wedge \tau_{5}$. Alternatively, we may express τ as

$$
\begin{equation*}
\tau=\inf \left\{t: X_{t}-X_{0}=1 \text { or } X_{t}-X_{0}=-3\right\} \tag{63}
\end{equation*}
$$

Now, we apply Proposition 7.8 on $X_{t}-X_{0}$ to compute $\mathbb{P}_{(2,0)}\left(X_{\tau}=1\right)$, but we need to justify why we may apply it. Since $\vec{B}_{t} \in \mathbb{R}^{2}$ is recurrent, then we know $\tau<\infty$ almost surely. Then, Proposition 7.8 is justified and

$$
\begin{equation*}
\mathbb{P}_{(2,0)}\left(X_{\tau}=1\right)=\mathbb{P}_{(2,0)}\left(X_{\tau}-X_{0}=-3\right)=1-\frac{3}{1+3}=\frac{1}{4} \tag{64}
\end{equation*}
$$

as desired.

