Peter-Weyl Theorem

Yiyang Liu Niuniu Zhang liuyiy@sas.upenn.edu niuniu@sas.upenn.edu

September 11, 2023

1 Preliminary

This presentation assumes the basic familiarity of L^p -spaces, inner product spaces, Hilbert spaces, definition of topological groups, and the very basics of measure theory.

1.1 The L^p -spaces

Definition 1.1 (rudin, 65). Suppose X is any arbitrary measure space with measure μ . If 0 and if f is a complex measurable function on X, define

$$\|f\|_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

and let $L^p(X)$ consist of all f for which

 $\|f\|_p < \infty$

We call $||f||_p$ the L^p -norm of f.

1.2 Topological Groups

Definition 1.2 (gallier, 249). A group G with identity 1 is a topological group if G is a Hausdorff topological space and the map

$$G \times G \to G : (g,h) \mapsto gh^{-1}$$

is continuous.

Definition 1.3 (gallier, 252). A topological space X is locally compact if and only if for every point $p \in X$, there is a compact neighborhood C of p; that is, there is a compact C and an open U, with $p \in U \subset C$. For example, the additive group $(\mathbb{R}, +)$ is locally compact.

Definition 1.4 (gallier, 257). Let G be a topological group and X be a topological space. G acts continuously on X if the map $\varphi : G \times X \to X$ is continuous.

If φ is continuous, then each map $\varphi_g: X \to X$ is a homeomorphism with $\varphi_g(x) = g \cdot x$ for all $x \in X$.

1.3 Haar Measure

G is an extremely general class of objects, including familiar structures such as \mathbb{R} , but certainly also including much more structures that may not be as nice. To define integral over functions whose domains are \mathbb{R} , we can use the Lebesgue measure. Therefore, to define integral over functions whose domains are these very general G, we also need some kind of measure.

Theorem 1.1 (Bergen, 2). Every locally compact group G admits a positive Borel measure μ , called the Haar measure, where

$$\mu(g \cdot X) = \mu(X) = \mu(X \cdot g)$$

for all $g \in G$ and μ -measurable sets X.

At this point, we may introduce the Hilbert Space $L^2(G)$, space of square-integrable functions defined on G, and its inner product is given by

$$\langle f_1, f_2 \rangle_{L^2} = \int_G f_1(g) \overline{f_2(g)} d\mu(g)$$

1.4 Hilbert Space

Loosely speaking, Hilbert Space is a normed vector space, where Cauchy sequence converges with respect to the norm. Having established the norm and inner product of $L^2(G)$, we introduce some important propositions and corollaries regarding the L^p -space and facts about Hilbert Space.

Proposition 1.1 (Bergen, 18). For $1 \le p < \infty$, Fun (G, \mathbb{C}) is dense in $L^p(G)$. In particular, if M, a collection of functions, is dense in Fun (G, \mathbb{C}) , then M is dense in $L^2(G)$.

We leave the proof as an exercise. Now, we dive into the discussion of Hilbert Space.

Definition 1.5 (Compact Operator). Suppose H is a Hilbert Space with the standard inner product and norm. Take \mathcal{B} to be a closed unit ball. A linear operator $T: H \to H$ is Compact if $\overline{T(\mathcal{B})}$ is compact.

Definition 1.6 (Self-adjoint Operator). Recall from linear algebra that a Hermitian Matrix M is precisely defined as $M = M^* = \overline{M^T}$. We defined a linear operator $T : H \to H$ to be self-adjoint if $T = T^*$, that is, for all $x, y \in H$, $\langle Tx, y \rangle = \langle x, Ty \rangle$

Recall from linear algebra that spectral decomposition deals with the orthogonal diagonalizability. In a similar vein, we introduce the Spectral Theorem for Hilbert Space and lead to the decomposition of a Hilbert Space.

Theorem 1.2 (Spectral Theorem). Suppose T is a compact self-adjoint operator on H and $\{\lambda_i\}_{i \in I}$ are distinct eigenvalues of T that are associated with eigenspaces $\{M_{\lambda_i}\}_{i \in I}$, then we may decompose H as an orthogonal Hilbert Space direct sum, i.e,

$$H = \bigoplus_{i \in I} M_{\lambda_i}$$

The ring multiplication of $\mathbb{C}[G]$ coincides with the notion of convolution operator.

Definition 1.7. Take ϕ to be continuous complex function defined on G, then we define the convolution operator T_{ϕ} by

$$T_{\phi}f(x) = \int_{G} \phi(xg^{-1})f(g)dg$$

note that T_{ϕ} is a bounded, compact, and self-adjoint operator.

Proposition 1.2. For $\lambda \in \mathbb{C}$, let M_{λ} be the corresponding eigenspace for T_{ϕ} . For each $g \in G$, we define

$$f_g(x) = f(xg)$$

then for each $f \in M_{\lambda}, f_g \in M_{\lambda}$.

2 Representation Theory

As the Peter-Weyl Theorem is all about decomposing $L^2(G)$, the square integrable functions defined on G, we construct a subspace \mathcal{M} , where the elements are called matrix coefficients. Then, we show \mathcal{M} is dense in $L^2(G)$.

Recall two important theorems from Representation Theory, namely Mashke's Theorem and Schur's Orthogonality Relations. **Theorem 2.1** (Orthogonality Relations). Let V_{ρ} and V_{π} be two nonisomorphic irreducible representations of G with respective G-invariant inner products $\langle -, - \rangle_{\rho}, \langle -, - \rangle_{\pi}$. Then for all $a, v \in V_{\rho}, b, w \in V_{\pi}$

$$\int_{G} \overline{\langle ga, v \rangle_{\rho}} \langle gb, w \rangle_{\pi} dg = 0$$

Theorem 2.2 (Mashke). Let V be a representation of the compact group G. If U is a subrepresentation of V, then there exists a subrepresentation W of V such that $V = U \oplus W$.

In particular, the orthogonality relations establish the orthogonality of the Matrix coefficient.

3 Theorem

In this presentation, we are primarily interested in finding representation of the topological group G in the vector space $L^2(G)$. However, in the case where G is finite, we have actually already seen in our homework how such a representation work.

Recall the regular representation $\mathbb{C}[G]$, where the vector space consists of formal expressions of the form

$$\sum_{g \in G} \lambda_g g$$

and acting by $h \in G$ just amounts to a left translation:

$$\rho(h)\left(\sum_{g\in G}\lambda_g g\right) = \sum_{g\in G}\lambda_g hg$$

In Homework 2, we have seen how this is isomorphic to the space $L^2(G)$, which for us was just $\operatorname{Fun}(G, \mathbb{C})$. However, in the case where G is infinite, we run into problems of continuity, and we no longer have $\mathbb{C}[G]$ being isomorphic to $L^2(G)$.

Definition 3.1. Given a finite dimensional representation $\rho : G \to GL(V_{\rho})$, and some *G*-invariant inner product on V_{ρ} , we can define the corresponding **matrix coefficient**, which is just a function $\sigma_{\rho,v_1,v_2} : G \to \mathbb{C}$ such that $\sigma_{\rho,v_1,v_2}(g) = \langle \rho(g)v_1, v_2 \rangle_{\rho}$ for some $v_1, v_2 \in V_{\rho}$

Proposition 3.1. Denote \mathcal{M} as the set of matrix coefficients of G. \mathcal{M} is closed under pointwise addition and scalar multiplication.

Definition 3.2. For a particular irreducible representation $\rho: G \to GL(V_{\rho})$, we can define the subspace

$$\mathcal{M}_{\rho} = Span\{\sigma_{\rho,v_1,v_2} \in \mathcal{M} : v_1, v_2 \in V_{\rho}\}$$

which is just the span of all of the matrix coefficients associated to the irreducible representation ρ . An element of \mathcal{M} is called a **matrix coefficient of the representation** ρ . In particular, M is closed under pointwise addition and scalar multiplication.

Proposition 3.2. Let $[\rho]$ denote the an equivalence class of isomorphic representations of G. If $\pi \in [\rho]$, then we know $\mathcal{M}_{\pi} = \mathcal{M}_{\rho}$.

At this point, from Mashke's Theorem and the closure property of \mathcal{M} , we know a matrix coefficient of a reducible representation is a sum of matrix coefficients of irreducible representations, i.e,

$$\mathcal{M} = \operatorname{Span}\{\bigcup_{[\rho]} \mathcal{M}_{[\rho]}\}$$

. .

By Schur's Orthogonality relation, we have

$$\mathcal{M} = \bigoplus_{[
ho]} \mathcal{M}_{[
ho]}$$

Proposition 3.3. Let $V_{\rho} \otimes V_{\rho}^*$ be the representation of G under the aciton

$$g(v_1 \otimes \langle -, v_2 \rangle_{\rho}) = gv_1 \otimes \langle -, v_2 \rangle_{\rho}$$

then

$$\mathcal{M} \cong \bigoplus_{[\rho]} V_{\rho} \otimes V_{\rho}^* \cong \bigoplus_{[\rho]} V_{\rho}^{\dim V_{\rho}}$$

Having constructed the matrix coefficient \mathcal{M} , we show \mathcal{M} is dense in $L^2(G)$.

Definition 3.3. Given any $f: G \to \mathbb{C}$, we could define

$$f_g: G \longrightarrow \mathbb{C}$$
$$x \longmapsto f(xg)$$

f is called **right** G-finite if the set $\{f_g : g \in G\}$ spans a finite dimensional vector space.

Proposition 3.4. Given any $f: G \to \mathbb{C}$, f is a matrix coefficient if and only if it is right G-finite.

Theorem 3.1. The set of matrix coefficients of G is dense in $C(G, \mathbb{C})$ (the subspace of continuous functions) **Theorem 3.2.** (Peter-Weyl Theorem Part I). As a representation of G,

$$L^2(G) \cong \overline{\mathcal{M}} \cong \overline{\bigoplus_{[\rho]} V_{\rho}^{\dim V_{\rho}}} = \widehat{\bigoplus_{[\rho]} V_{\rho}^{\dim V_{\rho}}}$$

To be clear, we are summing over all irreducible representation class of G.