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1 Preliminary

This presentation assumes the basic familiarity of Lp-spaces, inner product spaces, Hilbert spaces, definition
of topological groups, and the very basics of measure theory.

1.1 The Lp-spaces

Definition 1.1 (rudin, 65). Suppose X is any arbitrary measure space with measure µ. If 0 < p < ∞ and
if f is a complex measurable function on X, define

∥f∥p =

(∫
X

|f |pdµ
)1/p

and let Lp(X) consist of all f for which
∥f∥p < ∞

We call ∥f∥p the Lp-norm of f .

1.2 Topological Groups

Definition 1.2 (gallier, 249). A group G with identity 1 is a topological group if G is a Hausdorff topological
space and the map

G×G → G : (g, h) 7→ gh−1

is continuous.

Definition 1.3 (gallier, 252). A topological space X is locally compact if and only if for every point p ∈ X,
there is a compact neighborhood C of p; that is, there is a compact C and an open U , with p ∈ U ⊂ C. For
example, the additive group (R,+) is locally compact.

Definition 1.4 (gallier, 257). LetG be a topological group andX be a topological space. G acts continuously
on X if the map φ : G×X → X is continuous.

If φ is continuous, then each map φg : X → X is a homeomorphism with φg(x) = g · x for all x ∈ X.

1.3 Haar Measure

G is an extremely general class of objects, including familiar structures such as R, but certainly also including
much more structures that may not be as nice. To define integral over functions whose domains are R, we
can use the Lebesgue measure. Therefore, to define integral over functions whose domains are these very
general G, we also need some kind of measure.

Theorem 1.1 (Bergen, 2). Every locally compact group G admits a positive Borel measure µ, called the
Haar measure, where

µ(g ·X) = µ(X) = µ(X · g)
for all g ∈ G and µ-measurable sets X.
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At this point, we may introduce the Hilbert Space L2(G), space of square-integrable functions defined
on G, and its inner product is given by

⟨f1, f2⟩L2 =

∫
G

f1(g)f2(g)dµ(g)

1.4 Hilbert Space

Loosely speaking, Hilbert Space is a normed vector space, where Cauchy sequence converges with respect
to the norm. Having established the norm and inner product of L2(G), we introduce some important
propositions and corollaries regarding the Lp-space and facts about Hilbert Space.

Proposition 1.1 (Bergen, 18). For 1 ≤ p < ∞, Fun(G,C) is dense in Lp(G). In particular, if M , a collection
of functions, is dense in Fun(G,C), then M is dense in L2(G).

We leave the proof as an exercise. Now, we dive into the discussion of Hilbert Space.

Definition 1.5 (Compact Operator). Suppose H is a Hilbert Space with the standard inner product and
norm. Take B to be a closed unit ball. A linear operator T : H → H is Compact if T (B) is compact.

Definition 1.6 (Self-adjoint Operator). Recall from linear algebra that a Hermitian Matrix M is precisely

defined as M = M∗ = MT . We defined a linear operator T : H → H to be self-adjoint if T = T ∗, that is,
for all x, y ∈ H, ⟨Tx, y⟩ = ⟨x, Ty⟩

Recall from linear algebra that spectral decomposition deals with the orthogonal diagonalizability. In a
similar vein, we introduce the Spectral Theorem for Hilbert Space and lead to the decomposition of a
Hilbert Space.

Theorem 1.2 (Spectral Theorem). Suppose T is a compact self-adjoint operator on H and {λi}i∈I are
distinct eigenvalues of T that are associated with eigenspaces {Mλi

}i∈I , then we may decompose H as an
orthogonal Hilbert Space direct sum, i.e,

H =
⊕
i∈I

Mλi

The ring multiplication of C[G] coincides with the notion of convolution operator.

Definition 1.7. Take ϕ to be continuous complex function defined on G, then we define the convolution
operator Tϕ by

Tϕf(x) =

∫
G

ϕ(xg−1)f(g)dg

note that Tϕ is a bounded, compact, and self-adjoint operator.

Proposition 1.2. For λ ∈ C, let Mλ be the corresponding eigenspace for Tϕ. For each g ∈ G, we define

fg(x) = f(xg)

then for each f ∈ Mλ, fg ∈ Mλ.

2 Representation Theory

As the Peter-Weyl Theorem is all about decomposing L2(G), the square integrable functions defined on G,
we construct a subspace M, where the elements are called matrix coefficients. Then, we show M is dense
in L2(G).
Recall two important theorems from Representation Theory, namely Mashke’s Theorem and Schur’s Orthog-
onality Relations.
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Theorem 2.1 (Orthogonality Relations). Let Vρ and Vπ be two nonisomorphic irreducible representations
of G with respective G-invariant inner products ⟨−,−⟩ρ, ⟨−,−⟩π. Then for all a, v ∈ Vρ, b, w ∈ Vπ∫

G

⟨ga, v⟩ρ⟨gb, w⟩πdg = 0

Theorem 2.2 (Mashke). Let V be a representation of the compact group G. If U is a subrepresentation of
V , then there exists a subrepresentation W of V such that V = U ⊕W .

In particular, the orthogonality relations establish the orthogonality of the Matrix coefficient.

3 Theorem

In this presentation, we are primarily interested in finding representation of the topological group G in the
vector space L2(G). However, in the case where G is finite, we have actually already seen in our homework
how such a representation work.

Recall the regular representation C[G], where the vector space consists of formal expressions of the form∑
g∈G

λgg

and acting by h ∈ G just amounts to a left translation:

ρ(h)

∑
g∈G

λgg

 =
∑
g∈G

λghg

In Homework 2, we have seen how this is isomorphic to the space L2(G), which for us was just Fun(G,C).
However, in the case where G is infinite, we run into problems of continuity, and we no longer have C[G]
being isomorphic to L2(G).

Definition 3.1. Given a finite dimensional representation ρ : G → GL(Vρ), and some G-invariant inner
product on Vρ, we can define the corresponding matrix coefficient, which is just a function σρ,v1,v2 : G → C
such that σρ,v1,v2(g) = ⟨ρ(g)v1, v2⟩ρ for some v1, v2 ∈ Vρ

Proposition 3.1. Denote M as the set of matrix coefficients of G. M is closed under pointwise addition
and scalar multiplication.

Definition 3.2. For a particular irreducible representation ρ : G → GL(Vρ), we can define the subspace

Mρ = Span{σρ,v1,v2 ∈ M : v1, v2 ∈ Vρ}

which is just the span of all of the matrix coefficients associated to the irreducible representation ρ. An
element of M is called a matrix coefficient of the representation ρ. In particular, M is closed under
pointwise addition and scalar multiplication.

Proposition 3.2. Let [ρ] denote the an equivalence class of isomorphic representations of G. If π ∈ [ρ],
then we know Mπ = Mρ.

At this point, from Mashke’s Theorem and the closure property of M, we know a matrix coefficient of a
reducible representation is a sum of matrix coefficients of irreducible representations, i.e,

M = Span{
⋃
[ρ]

M[ρ]}

By Schur’s Orthogonality relation, we have

M =
⊕
[ρ]

M[ρ]
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Proposition 3.3. Let Vρ ⊗ V ∗
ρ be the representation of G under the aciton

g(v1 ⊗ ⟨−, v2⟩ρ) = gv1 ⊗ ⟨−, v2⟩ρ

then
M ∼=

⊕
[ρ]

Vρ ⊗ V ∗
ρ
∼=

⊕
[ρ]

V dimVρ
ρ

Having constructed the matrix coefficient M, we show M is dense in L2(G).

Definition 3.3. Given any f : G → C, we could define

fg : G −→ C
x 7−→ f(xg)

f is called right G-finite if the set {fg : g ∈ G} spans a finite dimensional vector space.

Proposition 3.4. Given any f : G → C, f is a matrix coefficient if and only if it is right G-finite.

Theorem 3.1. The set of matrix coefficients of G is dense in C(G,C) (the subspace of continuous functions)

Theorem 3.2. (Peter-Weyl Theorem Part I). As a representation of G,

L2(G) ∼= M ∼=
⊕
[ρ]

V
dimVρ
ρ =

⊕̂
[ρ]

V dimVρ
ρ

To be clear, we are summing over all irreducible representation class of G.
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