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The problem

The problem that motivates Peter-Weyl Theorem is the
representation of ”topological groups” in the space of functions.
Namely, we are considering some ”locally compact group” G and
the vector space L2(G ).



Locally Compact Group

Definition
A group G with identity 1 is a topological group if G is a
Hausdorff topological space and the map

G × G → G : (g , h) 7→ gh−1

is continuous.

Definition
A topological space X is locally compact if and only if for every
point p ∈ X , there is a compact neighborhood C of p; that is,
there is a compact C and an open U, with p ∈ U ⊂ C . For
example, the additive group (R,+) is locally compact.



Haar Measure

Theorem
Every locally compact group G admits a positive Borel measure µ,
called the Haar measure, where

µ(g · X ) = µ(X ) = µ(X · g)

for all g ∈ G and µ-measurable sets X .



Lp-Space

Definition
Suppose X is any arbitrary measure space with measure µ. If
0 < p < ∞ and if f is a complex measurable function on X , define

∥f ∥p =

(∫
X
|f |pdµ

)1/p

and let Lp(X ) consist of all f for which

∥f ∥p < ∞

We call ∥f ∥p the Lp-norm of f .

At this point, we may introduce the Hilbert Space L2(G ), space of
square-integrable functions defined on G , and its inner product is
given by

⟨f1, f2⟩L2 =
∫
G
f1(g)f2(g)dµ(g)



When G is finite

A special case is when our group G is a finite group.
Recall the regular representation C[G ], where the vector space
consists of formal expressions of the form∑

g∈G
λgg

and acting by h ∈ G just amounts to a left translation:

ρ(h)

∑
g∈G

λgg

 =
∑
g∈G

λghg

When G is finite, we have L2(G ) ∼= C[G ] via the ismorphism
f 7→

∑
g∈G f (g)g .

When G is infinite, C[G ] becomes way too complicated to study.



How does G act on L2(G )?

We can define action by G on L2(G ) by

g · f (h) = f (g−1h)

or (left vs right)
g · f (h) = f (hg)

(when G is compact, it turns out that there is no difference
between the two).



Representation Theory

Theorem (Orthogonality Relations)

Let Vρ and Vπ be two nonisomorphic irreducible representations of
G with respective G -invariant inner products ⟨−,−⟩ρ, ⟨−,−⟩π.
Then for all a, v ∈ Vρ, b,w ∈ Vπ∫

G
⟨ga, v⟩ρ⟨gb,w⟩πdg = 0

Note that in the analysis case, the character of a representation is
replaced by this ”inner product object” (matrix coefficient).

Theorem (Mashke)

Let V be a representation of the compact group G . If U is a
subrepresentation of V , then there exists a subrepresentation W of
V such that V = U ⊕W .



Matrix Coefficient: Definition

Definition
Given a finite dimensional representation ρ : G → GL(Vρ), and
some G -invariant inner product on Vρ, we can define the
corresponding matrix coefficient, which is just a function
σρ : G → C such that σρ(g) = ⟨ρ(g)v1, v2⟩ρ for some v1, v2 ∈ Vρ.
We denote the set of matrix coefficient of G as M.



Matrix Coefficient

Definition
For a particular irreducible representation ρ : G → GL(Vρ), we can
define the subspace

Mρ = Span{σρ,v1,v2 ∈ M : v1, v2 ∈ Vρ}

which is just the span of all of the matrix coefficients associated to
the irreducible representation ρ. An element of Mρ is called a
matrix coefficient of the representation ρ.



Matrix Coefficient: Property

Proposition

Denote M as the set of matrix coefficients of G . M is closed
under pointwise addition and scalar multiplication.

Proposition

Let [ρ] denote the an equivalence class of isomorphic
representations of G . If π ∈ [ρ], then we know Mπ = Mρ.



Matrix Coefficient:
⊕

From Mashke, we know a matrix coefficient of a reducible
representation is a sum of matrix coefficients of irreducible
representations.
By Schur’s Orthogonality relation, we have

M =
⊕
[ρ]

M[ρ]

with summands orthogonal with respect to the L2(G ) inner
product.



Matrix Coefficient:
⊗

Proposition

Let Vρ ⊗ V ∗
ρ be the representation of G under the aciton

g(v1 ⊗ ⟨−, v2⟩ρ) = gv1 ⊗ ⟨−, v2⟩ρ

then
M ∼=

⊕
[ρ]

M[ρ]
∼=

⊕
[ρ]

Vρ ⊗ V ∗
ρ
∼=

⊕
[ρ]

V
dimVρ
ρ



A black box that ties everything together

Theorem
The set of matrix coefficients of G is dense in C (G ,C) (the
subspace of continuous functions)



The Peter-Weyl Theorem

Theorem
(Peter-Weyl Theorem Part I). As a representation of G ,

L2(G ) ∼= M ∼=
⊕
[ρ]

V
dimVρ
ρ =

⊕̂
[ρ]

V
dimVρ
ρ

To be clear, we are summing over all irreducible representation
classes of G .



Example of Peter-Weyl Theorem in action

Consider G = S1 = {z = r · e ix ∈ C : |z | = 1} Abelian group.
Therefore, Schur’s Lemma indicates that ρ maps some element of
S1 into C×.
Know ρ(z) ∈ S1 through some non-trivial results.
Implies all representations of S1 are continuous homomorphisms
S1 → S1, so must be of the form e ix 7−→ e ixn where n ∈ Z.
Therefore, ρn(e

ix) ∈ GL(C) maps z ∈ C to ze ixn.
Matrix coefficients are of form

σn(e
ix) = ⟨ρn(e ix)z1, z2⟩ = z1z̄2e

ixn

So, M[ρn] = Ce ixn, and Peter-Weyl gives

L2(S1) =
⊕̂
[ρn]

Cenix
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