Peter-Weyl Theorem

Yiyang Liu, Niuniu Zhang

Math 520: Representation Theory

September 11, 2023

Outline

- Motivation
- Preliminary
 - Locally Compact Group
 - Haar Measure
 - L^p-space
- Representation Theroy
 - Schur's Orthogonality Relations
 - Mashke
- Matrix Coefficient
 - Definition
 - Structure as Subspace
 - Related Properties
- The Peter-Weyl Theorem
 - Application: Fourier Series

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The problem

The problem that motivates Peter-Weyl Theorem is the representation of "topological groups" in the space of functions. Namely, we are considering some "locally compact group" G and the vector space $L^2(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Locally Compact Group

Definition

A group G with identity 1 is a topological group if G is a Hausdorff topological space and the map

$$G \times G
ightarrow G : (g,h) \mapsto gh^{-1}$$

is continuous.

Definition

A topological space X is locally compact if and only if for every point $p \in X$, there is a compact neighborhood C of p; that is, there is a compact C and an open U, with $p \in U \subset C$. For example, the additive group $(\mathbb{R}, +)$ is locally compact.

Haar Measure

Theorem

Every locally compact group G admits a positive Borel measure μ , called the Haar measure, where

$$\mu(g \cdot X) = \mu(X) = \mu(X \cdot g)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

for all $g \in G$ and μ -measurable sets X.

L^p-Space

Definition

Suppose X is any arbitrary measure space with measure μ . If 0 and if f is a complex measurable function on X, define

$$\|f\|_p = \left(\int_X |f|^p d\mu\right)^{1/p}$$

and let $L^{p}(X)$ consist of all f for which

 $\left\|f\right\|_{p}<\infty$

We call $||f||_p$ the L^p -norm of f.

At this point, we may introduce the Hilbert Space $L^2(G)$, space of square-integrable functions defined on G, and its inner product is given by

$$\langle f_1, f_2 \rangle_{L^2} = \int_G f_1(g) \overline{f_2(g)} d\mu(g)$$

When G is finite

A special case is when our group G is a finite group. Recall the regular representation $\mathbb{C}[G]$, where the vector space consists of formal expressions of the form

$$\sum_{g \in G} \lambda_{gg}$$

and acting by $h \in G$ just amounts to a left translation:

$$\rho(h)\left(\sum_{g\in G}\lambda_g g\right) = \sum_{g\in G}\lambda_g hg$$

When G is finite, we have $L^2(G) \cong \mathbb{C}[G]$ via the ismorphism $f \mapsto \sum_{g \in G} f(g)g$. When G is infinite, $\mathbb{C}[G]$ becomes way too complicated to study. How does G act on $L^2(G)$?

We can define action by G on $L^2(G)$ by

$$g \cdot f(h) = f(g^{-1}h)$$

or (left vs right)

$$g \cdot f(h) = f(hg)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(when G is compact, it turns out that there is no difference between the two).

Representation Theory

Theorem (Orthogonality Relations)

Let V_{ρ} and V_{π} be two nonisomorphic irreducible representations of G with respective G-invariant inner products $\langle -, -\rangle_{\rho}, \langle -, -\rangle_{\pi}$. Then for all $a, v \in V_{\rho}, b, w \in V_{\pi}$

$$\int_{\mathcal{G}}\overline{\langle ga,v
angle _{
ho}}\langle gb,w
angle _{\pi}dg=0$$

Note that in the analysis case, the character of a representation is replaced by this "inner product object" (matrix coefficient).

Theorem (Mashke)

Let V be a representation of the compact group G. If U is a subrepresentation of V, then there exists a subrepresentation W of V such that $V = U \oplus W$.

Matrix Coefficient: Definition

Definition

Given a finite dimensional representation $\rho : G \to GL(V_{\rho})$, and some *G*-invariant inner product on V_{ρ} , we can define the corresponding **matrix coefficient**, which is just a function $\sigma_{\rho} : G \to \mathbb{C}$ such that $\sigma_{\rho}(g) = \langle \rho(g)v_1, v_2 \rangle_{\rho}$ for some $v_1, v_2 \in V_{\rho}$. We denote the set of matrix coefficient of *G* as \mathcal{M} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

For a particular irreducible representation $\rho: G \to GL(V_{\rho})$, we can define the subspace

$$\mathcal{M}_{\rho} = Span\{\sigma_{\rho, \mathbf{v}_1, \mathbf{v}_2} \in \mathcal{M} : \mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V}_{\rho}\}$$

which is just the span of all of the matrix coefficients associated to the irreducible representation ρ . An element of \mathcal{M}_{ρ} is called a **matrix coefficient of the representation** ρ .

Matrix Coefficient: Property

Proposition

Denote \mathcal{M} as the set of matrix coefficients of G. \mathcal{M} is closed under pointwise addition and scalar multiplication.

Proposition

Let $[\rho]$ denote the an equivalence class of isomorphic representations of *G*. If $\pi \in [\rho]$, then we know $\mathcal{M}_{\pi} = \mathcal{M}_{\rho}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

From Mashke, we know a matrix coefficient of a reducible representation is a sum of matrix coefficients of irreducible representations.

By Schur's Orthogonality relation, we have

$$\mathcal{M} = \bigoplus_{[\rho]} \mathcal{M}_{[\rho]}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

with summands orthogonal with respect to the $L^2(G)$ inner product.

Proposition

Let $V_
ho \otimes V_
ho^*$ be the representation of G under the aciton

$$g(v_1\otimes\langle-,v_2
angle_
ho)=gv_1\otimes\langle-,v_2
angle_
ho$$

then

$$\mathcal{M} \cong \bigoplus_{[
ho]} \mathcal{M}_{[
ho]} \cong \bigoplus_{[
ho]} V_{
ho} \otimes V_{
ho}^* \cong \bigoplus_{[
ho]} V_{
ho}^{\dim V_{
ho}}$$

A black box that ties everything together

Theorem

The set of matrix coefficients of G is dense in $C(G, \mathbb{C})$ (the subspace of continuous functions)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Peter-Weyl Theorem

Theorem

(Peter-Weyl Theorem Part I). As a representation of G,

$$L^2(G) \cong \overline{\mathcal{M}} \cong \overline{\bigoplus_{[\rho]} V_{
ho}^{\dim V_{
ho}}} = \widehat{\bigoplus_{[\rho]} V_{
ho}^{\dim V_{
ho}}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

To be clear, we are summing over all irreducible representation classes of G.

Example of Peter-Weyl Theorem in action

Consider $G = S^1 = \{z = r \cdot e^{ix} \in \mathbb{C} : |z| = 1\}$ Abelian group. Therefore, Schur's Lemma indicates that ρ maps some element of S^1 into \mathbb{C}^{\times} . Know $\rho(z) \in S^1$ through some non-trivial results. Implies all representations of S^1 are continuous homomorphisms $S^1 \to S^1$, so must be of the form $e^{ix} \longmapsto e^{ixn}$ where $n \in \mathbb{Z}$. Therefore, $\rho_n(e^{ix}) \in GL(\mathbb{C})$ maps $z \in \mathbb{C}$ to ze^{ixn} . Matrix coefficients are of form

$$\sigma_n(e^{ix}) = \langle \rho_n(e^{ix})z_1, z_2 \rangle = z_1 \bar{z_2} e^{ixn}$$

So, $\mathcal{M}_{[
ho_n]} = \mathbb{C}e^{i imes n}$, and Peter-Weyl gives

$$L^2(S^1) = \widehat{\bigoplus_{[\rho_n]}} \mathbb{C}e^{nix}$$

References

- 1. Jean Gallier and Jocelyn Quaintance, Aspects of Harmonic Analysis and Representation Theory
- 2. Walter Rudin, Real and Complex Analysis
- 3. John Bergan, The Peter-Weyl Theorem and Generalization

- ロ ト - 4 回 ト - 4 □

4. Terence Tao, The Peter-Weyl theorem, and non-abelian Fourier analysis on compact groups