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1 Conditional Expectation

Definition 1 (conditional expectation). E(X | F) := Y ⇐⇒ Y ∈ F and ∀A ∈ F ,
∫
A
XdP =

∫
A
Y dP

Theorem 1 (4.1.9). (a) E (aX + Y | F) = aE(X | F) + E(Y | F)

(b) X ≤ Y =⇒ E(X | F) ≤ E(Y | F)

(c) Xn ≥ 0, Xn ↑ X,EX < ∞ =⇒ E(Xn | F) ↑ E(X | F)

Theorem 2 (4.1.12). F ⊂ G,E(X | G) ∈ F =⇒ E(X | F) = E(X | G)

Theorem 3 (4.1.13 Tower property). F1 ⊂ F2 =⇒ E(E(X | F2)F1) = E(E(X | F1)F2) = E(X | F1)

Theorem 4 (4.1.14). X ∈ F ,E|Y |,E|XY | < ∞ =⇒ E(XY | F) = XE(Y | F)

Theorem 5 (“minimizer” 4.1.15). EX2 < ∞ =⇒ Y := E(X | F) ∈ F =⇒ min{E(X − Y )2}

2 Martingale

Definition 2 (Martingale). Fn is filtration, Xn is said to be adapted to Fn if Xn ∈ Fn for all n. Xn is
martingale if

(i) E|Xn| < ∞

(ii) Xn adapted to Fn

(iii) E (Xn+1 | Fn) = Xn for all n

Theorem 6 (4.2.4/4.2.5). The following claim applies for super/sub-martingale and martingale: If Xn is a
martingale, then for n > m,E (Xn | Fm) = Xm.

Definition 3 (predictable sequence). Hn, n ≥ 1 if Hn ∈ Fn−1. If you bet according to a gambling system,
then winning at time n would be

(H ·X)n =

n∑
m=1

Hm (Xm −Xm−1) (1)

N stopping time takes value in N, then {N = n} ∈ Fn and Hn = 1N≥n is predicable and

(H ·X)n =

n∑
k=1

1N≥k (Xk −Xk−1) (2)

Theorem 7 (4.2.8 Predicable). Xn super-martingale. If Hn ≥ 0 is predictable and Hn bounded, then
(H ·X)n is a super-martingale.
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Theorem 8 (4.1.10 Jensen). If φ is convex and E|X|,E|φ(X)| < ∞, then

φ (E(X | F)) ≤ E (φ(X) | F) (3)

For example, |·| is convex.

Theorem 9 (4.2.11. Martingale convergence theorem). supEX+
n < ∞ =⇒ limn→∞ Xn → X a.s.,E|X| <

∞

Theorem 10 (4.2.12/super-martingale). Xn ≥ 0 =⇒ limn→∞ Xn = X a.s.,EX ≤ EX0

Theorem 11 (4.3.1 Bounded increment). Xn martingale with |Xn+1 −Xn| ≤ M < ∞, then either limXn

exists and is finite or oscillate between +∞ and −∞.

C = {limXn exists and is finite} (4)

D = {lim supXn = ∞ and lim infXn = −∞} (5)

then P (C ∪D) = 1.

Definition 4 (Galton-Watson process). ξni IID, define a sequence Zn, the number of individuals in the nth
generation, Z0 = 1, then

Zn+1 =

{
ξn+1
1 + · · ·+ ξn+1

Zn
if Zn > 0

0 if Zn = 0
(6)

Lemma 1 (4.3.9 Branching process). Fn = σ(ξ), µ = Eξ, Zn/µ
n is non-negative martingale.

add why EZn = µn

Theorem 12 (4.3.10 Sub-critical). µ < 1 =⇒ Zn = 0 for all n large, so Zn/µ
n → 0.

Theorem 13 (4.3.11 Critical). µ = 1, p1 = P (ξmi = 1) < 1 =⇒ Zn = 0 for all n large.

Definition 5 (Generating function). ∀s ∈ [0, 1], φ(s) =
∑

k≥0 pks
k =

∑
k≥0 P (ξmi = k) sk.

Theorem 14 (4.3.12 Supercritical). µ > 1, Z0 = 1 =⇒ P(Zn = 0 for some n) = ρ, the only solution of
φ(ρ) = ρ in [0, 1).

Theorem 15 (4.3.13). W = limZn/µ
n ̸≡ 0 iff

∑
pkk log k < ∞.

∑
k2pk < ∞ is sufficient for a nontrivial

limit.

Theorem 16 (4.4.2 Doob’s inequality). Let Xm be sub-martingale, then

X̄n = max
0≤m≤n

X+
m (7)

λ > 0 and A = {X̄n ≥ λ}. Then

λP(A) ≤ EXn1A ≤ EX+
n (8)

Theorem 17 (4.4.4 Lp maximum inequality). If Xn is a sub-martingale, then for 1 < p < ∞

E(X̄p
n) ≤

(
p

p− 1

)p

E(X+
n )p (9)

Theorem 18 (4.4.6 Lp convergence theorem). supE|Xn|p < ∞ with p > 1, then Xn → X a.s. and in Lp.

Theorem 19 (4.4.7 Ortho of martingale increment). EX2
n < ∞,m ≤ n, Y ∈ Fm with EY 2 < ∞, then

E((Xn −Xm)Y ) = 0. If ℓ < m < n, then E((Xn −Xm)(Xm −Xℓ)) = 0.
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Definition 6 (Uniform integrability). UI iff

lim
M→∞

(
sup
i∈I

E (|Xi|; |Xi| > M)

)
= 0 (10)

Theorem 20 (U.I. equivalence 4.6.7). U.I ⇐⇒ Converges a.s. and in L1 ⇐⇒ converges in L1 ⇐⇒
there exists an integrable r.v. X with Xn = E (X | Fn)

Theorem 21 (4.6.8). Fn ↑ F∞, then E(X | Fn) → E(X | F∞) a.s. and in L1.

Theorem 22 (4.6.9 Levy’s 0-1 law). Fn ↑ F∞, A ∈ F∞, then E (1A | Fn) → 1A a.s.

Theorem 23 (4.8.1). Xn U.I. implies XN∧n U.I.

Theorem 24 (4.8.2). (Check exercise) E|XN | < ∞ and Xn1N>n U.I., then XN∧n U.I. and EX0 ≤ EXN .

Theorem 25 (OST). Suppose XN∧n is a U.I martingale. Let X∞ = limn→∞ XN∧n on the event {N = ∞},
Then E[XN ] = E[X0].

Theorem 26 (4.8.3). Xn U.I. implies for N ≤ ∞, EX0 ≤ EXN ≤ EX∞ = E limXn.

Theorem 27 (4.8.7 SSRW). P(ξ = 1) = P(ξ = −1) = 1/2, S0 = x and N = min (n : Sn ̸∈ (a, b)), then

Px(SN = a) =
b− x

b− a
Px(SN = b) =

x− a

b− a
ExN = (b− x)(x− a) (11)

Theorem 28 (4.8.9 ASRW). (practice) P(ξ = 1) = p,P(ξ = −1) = q, S0 = x and N = min (n : Sn ̸∈ (a, b)),
then

(a) φ(y) = (q/p)
t
, then φ(Sn) is martingale.

(b) Tz = inf{n : Sn = z}, then for a < x < b, Px(Ta < Tb) =
φ(b)−φ(x)
φ(b)−φ(a) and Px(Tb < Ta) =

φ(x)−φ(a)
φ(b)−φ(a)

If p > 1/2, we get

(c) a < 0,P (minn Sn ≤ a) = P (Ta < ∞) =
(

q
p

)−a

(c) b > 0, then P(Tb < ∞) = 1 and ETb =
b

2p−1

3 Brownian motion

Definition 7 (BM). (a) Independent increment, (b) B(s+ t)−B(s) ∼ N (0, t), (c) continuous

Definition 8 (BM translation invariance). {Bt−B0} independent and has the same law as BW with B0 = 0.

Definition 9 (BM scaling relation). B0 = 0, then Bst
d
= t1/2Bs

Definition 10 (Markov property/non-rigorous). If s ≥ 0, then B(t+ s)−B(s), t ≥ 0 is a Brownian motion
that is independent of what happened before time s. What happened before s:

Fo
s = σ (Br : r ≤ s) (12)

Infinitesimal peek at the future:

F+
s = ∩t>sFo

t (13)

A ∈ F+
s if A ∈ F+

s+ϵ for any ϵ > 0.

Theorem 29 (7.2.3 Bluementhal’s 0-1 law). A ∈ F+
0 , then for all x ∈ Rd,Px(A) ∈ {0, 1}.

Theorem 30 (7.2.4). τ = inf{t ≥ 0 : Bt > 0}, then P0 (τ = 0) = 1.
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Theorem 31 (7.2.5). T0 = inf (t > 0 : Bt = 0) then P0(T0 = 0) = 1.

Theorem 32 (7.2.6 Inversion symmetry). Bt starts at zero implies Xt = tB(1/t) BM starts at zero.

Theorem 33 (7.2.8). Bt start at zero then with probability one, we have

lim sup
t→∞

Bt/
√
t = ∞ lim inf

t→∞
Bt/

√
t = −∞ (14)

Lemma 2 (from class). b > a > 0, Ta − Tb ⊥⊥ Ta and Tb − Ta
d
= Tb−a

Theorem 34 (from class/Reflection principle 7.4.2). P0(Ta < t) = 2P0(Bt ≥ a)

Theorem 35 (from class/Zero set of BM). Z = {t : Bt = 0}. t ∈ Z is isolated means ∃ϵ > 0, (t− ϵ, t+ ϵ)∩
Z = {t}. P (Z has no isolated point) = 1.
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