Math 6490 Midterm I review

Niuniu Zhang

September 10, 2023

1 Conditional Expectation

Definition 1 (conditional expectation). $\mathbb{E}(X \mid \mathcal{F}):=Y \Longleftrightarrow Y \in \mathcal{F}$ and $\forall A \in \mathcal{F}, \int_{A} X d P=\int_{A} Y d P$
Theorem 1 (4.1.9). (a) $\mathbb{E}(a X+Y \mid \mathcal{F})=a \mathbb{E}(X \mid \mathcal{F})+\mathbb{E}(Y \mid \mathcal{F})$
(b) $X \leq Y \Longrightarrow \mathbb{E}(X \mid \mathcal{F}) \leq \mathbb{E}(Y \mid \mathcal{F})$
(c) $X_{n} \geq 0, X_{n} \uparrow X, \mathbb{E} X<\infty \Longrightarrow \mathbb{E}\left(X_{n} \mid \mathcal{F}\right) \uparrow \mathbb{E}(X \mid \mathcal{F})$

Theorem 2 (4.1.12). $\mathcal{F} \subset \mathcal{G}, \mathbb{E}(X \mid \mathcal{G}) \in \mathcal{F} \Longrightarrow \mathbb{E}(X \mid \mathcal{F})=\mathbb{E}(X \mid \mathcal{G})$
Theorem 3 (4.1.13 Tower property). $\mathcal{F}_{1} \subset \mathcal{F}_{2} \Longrightarrow \mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{2}\right) \mathcal{F}_{1}\right)=\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{1}\right) \mathcal{F}_{2}\right)=\mathbb{E}\left(X \mid \mathcal{F}_{1}\right)$
Theorem 4 (4.1.14). $X \in \mathcal{F}, \mathbb{E}|Y|, \mathbb{E}|X Y|<\infty \Longrightarrow \mathbb{E}(X Y \mid \mathcal{F})=X \mathbb{E}(Y \mid \mathcal{F})$
Theorem 5 ("minimizer" 4.1.15). $\mathbb{E} X^{2}<\infty \Longrightarrow Y:=\mathbb{E}(X \mid \mathcal{F}) \in \mathcal{F} \Longrightarrow \min \left\{E(X-Y)^{2}\right\}$

2 Martingale

Definition 2 (Martingale). \mathcal{F}_{n} is filtration, X_{n} is said to be adapted to \mathcal{F}_{n} if $X_{n} \in \mathcal{F}_{n}$ for all $n . X_{n}$ is martingale if
(i) $\mathbb{E}\left|X_{n}\right|<\infty$
(ii) X_{n} adapted to \mathcal{F}_{n}
(iii) $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}$ for all n

Theorem 6 (4.2.4/4.2.5). The following claim applies for super/sub-martingale and martingale: If X_{n} is a martingale, then for $n>m, \mathbb{E}\left(X_{n} \mid \mathcal{F}_{m}\right)=X_{m}$.

Definition 3 (predictable sequence). $H_{n}, n \geq 1$ if $H_{n} \in \mathcal{F}_{n-1}$. If you bet according to a gambling system, then winning at time n would be

$$
\begin{equation*}
(H \cdot X)_{n}=\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right) \tag{1}
\end{equation*}
$$

N stopping time takes value in \mathbb{N}, then $\{N=n\} \in \mathcal{F}_{n}$ and $H_{n}=\mathbf{1}_{N \geq n}$ is predicable and

$$
\begin{equation*}
(H \cdot X)_{n}=\sum_{k=1}^{n} \mathbf{1}_{N \geq k}\left(X_{k}-X_{k-1}\right) \tag{2}
\end{equation*}
$$

Theorem 7 (4.2.8 Predicable). X_{n} super-martingale. If $H_{n} \geq 0$ is predictable and H_{n} bounded, then $(H \cdot X)_{n}$ is a super-martingale.

Theorem 8 (4.1.10 Jensen). If φ is convex and $\mathbb{E}|X|, \mathbb{E}|\varphi(X)|<\infty$, then

$$
\begin{equation*}
\varphi(\mathbb{E}(X \mid \mathcal{F})) \leq \mathbb{E}(\varphi(X) \mid \mathcal{F}) \tag{3}
\end{equation*}
$$

For example, $|\cdot|$ is convex.
Theorem 9 (4.2.11. Martingale convergence theorem). sup $\mathbb{E} X_{n}^{+}<\infty \Longrightarrow \lim _{n \rightarrow \infty} X_{n} \rightarrow X$ a.s., $\mathbb{E}|X|<$ ∞

Theorem 10 (4.2.12/super-martingale). $X_{n} \geq 0 \Longrightarrow \lim _{n \rightarrow \infty} X_{n}=X$ a.s., $\mathbb{E} X \leq \mathbb{E} X_{0}$
Theorem 11 (4.3.1 Bounded increment). X_{n} martingale with $\left|X_{n+1}-X_{n}\right| \leq M<\infty$, then either $\lim X_{n}$ exists and is finite or oscillate between $+\infty$ and $-\infty$.

$$
\begin{align*}
& C=\left\{\lim X_{n} \text { exists and is finite }\right\} \tag{4}\\
& D=\left\{\limsup X_{n}=\infty \text { and } \lim \inf X_{n}=-\infty\right\} \tag{5}
\end{align*}
$$

then $\mathbb{P}(C \cup D)=1$.
Definition 4 (Galton-Watson process). ξ_{i}^{n} IID, define a sequence Z_{n}, the number of individuals in the nth generation, $Z_{0}=1$, then

$$
Z_{n+1}= \begin{cases}\xi_{1}^{n+1}+\cdots+\xi_{Z_{n}}^{n+1} & \text { if } Z_{n}>0 \tag{6}\\ 0 & \text { if } Z_{n}=0\end{cases}
$$

Lemma 1 (4.3.9 Branching process). $\mathcal{F}_{n}=\sigma(\xi), \mu=\mathbb{E} \xi, Z_{n} / \mu^{n}$ is non-negative martingale.
add why $\mathbb{E} Z_{n}=\mu^{n}$
Theorem 12 (4.3.10 Sub-critical). $\mu<1 \Longrightarrow Z_{n}=0$ for all n large, so $Z_{n} / \mu^{n} \rightarrow 0$.
Theorem 13 (4.3.11 Critical). $\mu=1, p_{1}=\mathbb{P}\left(\xi_{i}^{m}=1\right)<1 \Longrightarrow Z_{n}=0$ for all n large.
Definition 5 (Generating function). $\forall s \in[0,1], \varphi(s)=\sum_{k \geq 0} p_{k} s^{k}=\sum_{k \geq 0} \mathbb{P}\left(\xi_{i}^{m}=k\right) s^{k}$.
Theorem 14 (4.3.12 Supercritical). $\mu>1, Z_{0}=1 \Longrightarrow \mathbb{P}\left(Z_{n}=0\right.$ for some $\left.n\right)=\rho$, the only solution of $\varphi(\rho)=\rho$ in $[0,1)$.

Theorem 15 (4.3.13). $W=\lim Z_{n} / \mu^{n} \not \equiv 0$ iff $\sum p_{k} k \log k<\infty . \sum k^{2} p_{k}<\infty$ is sufficient for a nontrivial limit.

Theorem 16 (4.4.2 Doob's inequality). Let X_{m} be sub-martingale, then

$$
\begin{equation*}
\bar{X}_{n}=\max _{0 \leq m \leq n} X_{m}^{+} \tag{7}
\end{equation*}
$$

$\lambda>0$ and $A=\left\{\bar{X}_{n} \geq \lambda\right\}$. Then

$$
\begin{equation*}
\lambda \mathbb{P}(A) \leq \mathbb{E} X_{n} \mathbf{1}_{A} \leq \mathbb{E} X_{n}^{+} \tag{8}
\end{equation*}
$$

Theorem 17 (4.4.4 L^{p} maximum inequality). If X_{n} is a sub-martingale, then for $1<p<\infty$

$$
\begin{equation*}
\mathbb{E}\left(\bar{X}_{n}^{p}\right) \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left(X_{n}^{+}\right)^{p} \tag{9}
\end{equation*}
$$

Theorem 18 (4.4.6 L^{p} convergence theorem). $\sup \mathbb{E}\left|X_{n}\right|^{p}<\infty$ with $p>1$, then $X_{n} \rightarrow X$ a.s. and in L^{p}.
Theorem 19 (4.4.7 Ortho of martingale increment). $\mathbb{E} X_{n}^{2}<\infty, m \leq n, Y \in \mathcal{F}_{m}$ with $\mathbb{E} Y^{2}<\infty$, then $\mathbb{E}\left(\left(X_{n}-X_{m}\right) Y\right)=0$. If $\ell<m<n$, then $\mathbb{E}\left(\left(X_{n}-X_{m}\right)\left(X_{m}-X_{\ell}\right)\right)=0$.

Definition 6 (Uniform integrability). UI iff

$$
\begin{equation*}
\lim _{M \rightarrow \infty}\left(\sup _{i \in I} \mathbb{E}\left(\left|X_{i}\right| ;\left|X_{i}\right|>M\right)\right)=0 \tag{10}
\end{equation*}
$$

Theorem 20 (U.I. equivalence 4.6.7). U.I \Longleftrightarrow Converges a.s. and in $L^{1} \Longleftrightarrow$ converges in $L^{1} \Longleftrightarrow$ there exists an integrable r.v. X with $X_{n}=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$
Theorem 21 (4.6.8). $F_{n} \uparrow F_{\infty}$, then $\mathbb{E}\left(X \mid \mathcal{F}_{n}\right) \rightarrow \mathbb{E}\left(X \mid \mathcal{F}_{\infty}\right)$ a.s. and in L^{1}.
Theorem 22 (4.6.9 Levy's 0-1 law). $\mathcal{F}_{n} \uparrow \mathcal{F}_{\infty}, A \in \mathcal{F}_{\infty}$, then $\mathbb{E}\left(\mathbf{1}_{A} \mid \mathcal{F}_{n}\right) \rightarrow \mathbf{1}_{A}$ a.s.
Theorem 23 (4.8.1). X_{n} U.I. implies $X_{N \wedge n}$ U.I.
Theorem 24 (4.8.2). (Check exercise) $\mathbb{E}\left|X_{N}\right|<\infty$ and $X_{n} \mathbf{1}_{N>n}$ U.I., then $X_{N \wedge n}$ U.I. and $\mathbb{E} X_{0} \leq \mathbb{E} X_{N}$.
Theorem 25 (OST). Suppose $X_{N \wedge n}$ is a U.I martingale. Let $X_{\infty}=\lim _{n \rightarrow \infty} X_{N \wedge n}$ on the event $\{N=\infty\}$, Then $\mathbb{E}\left[X_{N}\right]=\mathbb{E}\left[X_{0}\right]$.

Theorem 26 (4.8.3). X_{n} U.I. implies for $N \leq \infty, \mathbb{E} X_{0} \leq \mathbb{E} X_{N} \leq \mathbb{E} X_{\infty}=\mathbb{E} \lim X_{n}$.
Theorem $27(4.8 .7 \mathrm{SSRW}) . \mathbb{P}(\xi=1)=\mathbb{P}(\xi=-1)=1 / 2, S_{0}=x$ and $N=\min \left(n: S_{n} \notin(a, b)\right)$, then

$$
\begin{equation*}
\mathbb{P}_{x}\left(S_{N}=a\right)=\frac{b-x}{b-a} \quad \mathbb{P}_{x}\left(S_{N}=b\right)=\frac{x-a}{b-a} \quad \mathbb{E}_{x} N=(b-x)(x-a) \tag{11}
\end{equation*}
$$

Theorem 28 (4.8.9 ASRW). (practice) $\mathbb{P}(\xi=1)=p, \mathbb{P}(\xi=-1)=q, S_{0}=x$ and $N=\min \left(n: S_{n} \notin(a, b)\right)$, then
(a) $\varphi(y)=(q / p)^{t}$, then $\varphi\left(S_{n}\right)$ is martingale.
(b) $T_{z}=\inf \left\{n: S_{n}=z\right\}$, then for $a<x<b, P_{x}\left(T_{a}<T_{b}\right)=\frac{\varphi(b)-\varphi(x)}{\varphi(b)-\varphi(a)}$ and $P_{x}\left(T_{b}<T_{a}\right)=\frac{\varphi(x)-\varphi(a)}{\varphi(b)-\varphi(a)}$

If $p>1 / 2$, we get
(c) $a<0, \mathbb{P}\left(\min _{n} S_{n} \leq a\right)=\mathbb{P}\left(T_{a}<\infty\right)=\left(\frac{q}{p}\right)^{-a}$
(c) $b>0$, then $\mathbb{P}\left(T_{b}<\infty\right)=1$ and $\mathbb{E} T_{b}=\frac{b}{2 p-1}$

3 Brownian motion

Definition 7 (BM). (a) Independent increment, (b) $B(s+t)-B(s) \sim \mathcal{N}(0, t)$, (c) continuous
Definition 8 (BM translation invariance). $\left\{B_{t}-B_{0}\right\}$ independent and has the same law as $B W$ with $B_{0}=0$.
Definition 9 (BM scaling relation). $B_{0}=0$, then $B_{s t} \stackrel{d}{=} t^{1 / 2} B_{s}$
Definition 10 (Markov property/non-rigorous). If $s \geq 0$, then $B(t+s)-B(s), t \geq 0$ is a Brownian motion that is independent of what happened before time s. What happened before s :

$$
\begin{equation*}
\mathcal{F}_{s}^{o}=\sigma\left(B_{r}: r \leq s\right) \tag{12}
\end{equation*}
$$

Infinitesimal peek at the future:

$$
\begin{equation*}
\mathcal{F}_{s}^{+}=\cap_{t>s} \mathcal{F}_{t}^{o} \tag{13}
\end{equation*}
$$

$A \in \mathcal{F}_{s}^{+}$if $A \in \mathcal{F}_{s+\epsilon}^{+}$for any $\epsilon>0$.
Theorem 29 (7.2.3 Bluementhal's 0-1 law). $A \in \mathcal{F}_{0}^{+}$, then for all $x \in \mathbb{R}^{d}, \mathbb{P}_{x}(A) \in\{0,1\}$.
Theorem 30 (7.2.4). $\tau=\inf \left\{t \geq 0: B_{t}>0\right\}$, then $\mathbb{P}_{0}(\tau=0)=1$.

Theorem 31 (7.2.5). $T_{0}=\inf \left(t>0: B_{t}=0\right)$ then $P_{0}\left(T_{0}=0\right)=1$.
Theorem 32 (7.2.6 Inversion symmetry). B_{t} starts at zero implies $X_{t}=t B(1 / t) B M$ starts at zero.
Theorem 33 (7.2.8). B_{t} start at zero then with probability one, we have

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} B_{t} / \sqrt{t}=\infty \quad \liminf _{t \rightarrow \infty} B_{t} / \sqrt{t}=-\infty \tag{14}
\end{equation*}
$$

Lemma 2 (from class). $b>a>0, T_{a}-T_{b} \Perp T_{a}$ and $T_{b}-T_{a} \stackrel{d}{=} T_{b-a}$
Theorem 34 (from class/Reflection principle 7.4.2). $\mathbb{P}_{0}\left(T_{a}<t\right)=2 \mathbb{P}_{0}\left(B_{t} \geq a\right)$
Theorem 35 (from class/Zero set of BM). $Z=\left\{t: B_{t}=0\right\} . t \in Z$ is isolated means $\exists \epsilon>0,(t-\epsilon, t+\epsilon) \cap$ $Z=\{t\} . \mathbb{P}(Z$ has no isolated point $)=1$.

