Math 6490 Midterm I review

Niuniu Zhang

September 10, 2023

1 Conditional Expectation

Definition 1 (conditional expectation). $\mathbb{E}(X | \mathcal{F}) := Y \iff Y \in \mathcal{F} \text{ and } \forall A \in \mathcal{F}, \int_A X dP = \int_A Y dP$ **Theorem 1** (4.1.9). (a) $\mathbb{E}(aX + Y | \mathcal{F}) = a\mathbb{E}(X | \mathcal{F}) + \mathbb{E}(Y | \mathcal{F})$ (b) $X \leq Y \implies \mathbb{E}(X | \mathcal{F}) \leq \mathbb{E}(Y | \mathcal{F})$ (c) $X_n \geq 0, X_n \uparrow X, \mathbb{E}X < \infty \implies \mathbb{E}(X_n | \mathcal{F}) \uparrow \mathbb{E}(X | \mathcal{F})$ **Theorem 2** (4.1.12). $\mathcal{F} \subset \mathcal{G}, \mathbb{E}(X | \mathcal{G}) \in \mathcal{F} \implies \mathbb{E}(X | \mathcal{F}) = \mathbb{E}(X | \mathcal{G})$ **Theorem 3** (4.1.13 Tower property). $\mathcal{F}_1 \subset \mathcal{F}_2 \implies \mathbb{E}(\mathbb{E}(X | \mathcal{F}_2)\mathcal{F}_1) = \mathbb{E}(\mathbb{E}(X | \mathcal{F}_1)\mathcal{F}_2) = \mathbb{E}(X | \mathcal{F}_1)$ **Theorem 4** (4.1.14). $X \in \mathcal{F}, \mathbb{E}|Y|, \mathbb{E}|XY| < \infty \implies \mathbb{E}(XY | \mathcal{F}) = X\mathbb{E}(Y | \mathcal{F})$ **Theorem 5** ("minimizer" 4.1.15). $\mathbb{E}X^2 < \infty \implies Y := \mathbb{E}(X | \mathcal{F}) \in \mathcal{F} \implies \min\{E(X - Y)^2\}$

2 Martingale

Definition 2 (Martingale). \mathcal{F}_n is filtration, X_n is said to be adapted to \mathcal{F}_n if $X_n \in \mathcal{F}_n$ for all n. X_n is martingale if

- (i) $\mathbb{E}|X_n| < \infty$
- (ii) X_n adapted to \mathcal{F}_n
- (*iii*) $\mathbb{E}(X_{n+1} \mid \mathcal{F}_n) = X_n$ for all n

Theorem 6 (4.2.4/4.2.5). The following claim applies for super/sub-martingale and martingale: If X_n is a martingale, then for n > m, $\mathbb{E}(X_n | \mathcal{F}_m) = X_m$.

Definition 3 (predictable sequence). $H_n, n \ge 1$ if $H_n \in \mathcal{F}_{n-1}$. If you bet according to a gambling system, then winning at time n would be

$$(H \cdot X)_n = \sum_{m=1}^n H_m \left(X_m - X_{m-1} \right)$$
(1)

N stopping time takes value in \mathbb{N} , then $\{N = n\} \in \mathcal{F}_n$ and $H_n = \mathbf{1}_{N \ge n}$ is predicable and

$$(H \cdot X)_n = \sum_{k=1}^n \mathbf{1}_{N \ge k} (X_k - X_{k-1})$$
(2)

Theorem 7 (4.2.8 Predicable). X_n super-martingale. If $H_n \ge 0$ is predictable and H_n bounded, then $(H \cdot X)_n$ is a super-martingale.

Theorem 8 (4.1.10 Jensen). If φ is convex and $\mathbb{E}|X|, \mathbb{E}|\varphi(X)| < \infty$, then

$$\varphi\left(\mathbb{E}(X \mid \mathcal{F})\right) \le \mathbb{E}\left(\varphi(X) \mid \mathcal{F}\right) \tag{3}$$

For example, $|\cdot|$ is convex.

Theorem 9 (4.2.11. Martingale convergence theorem). $\sup \mathbb{E}X_n^+ < \infty \implies \lim_{n \to \infty} X_n \to X \text{ a.s.}, \mathbb{E}|X| < \infty$

Theorem 10 (4.2.12/super-martingale). $X_n \ge 0 \implies \lim_{n\to\infty} X_n = X \ a.s., \mathbb{E}X \le \mathbb{E}X_0$

Theorem 11 (4.3.1 Bounded increment). X_n martingale with $|X_{n+1} - X_n| \le M < \infty$, then either $\lim X_n$ exists and is finite or oscillate between $+\infty$ and $-\infty$.

$$C = \{\lim X_n \text{ exists and is finite}\}$$
(4)

 $D = \{\limsup X_n = \infty \text{ and } \liminf X_n = -\infty\}$ (5)

then $\mathbb{P}(C \cup D) = 1$.

Definition 4 (Galton-Watson process). ξ_i^n IID, define a sequence Z_n , the number of individuals in the nth generation, $Z_0 = 1$, then

$$Z_{n+1} = \begin{cases} \xi_1^{n+1} + \dots + \xi_{Z_n}^{n+1} & \text{if } Z_n > 0\\ 0 & \text{if } Z_n = 0 \end{cases}$$
(6)

Lemma 1 (4.3.9 Branching process). $\mathcal{F}_n = \sigma(\xi), \mu = \mathbb{E}\xi, Z_n/\mu^n$ is non-negative martingale.

add why $\mathbb{E}Z_n = \mu^n$

Theorem 12 (4.3.10 Sub-critical). $\mu < 1 \implies Z_n = 0$ for all n large, so $Z_n/\mu^n \to 0$.

Theorem 13 (4.3.11 Critical). $\mu = 1, p_1 = \mathbb{P}(\xi_i^m = 1) < 1 \implies Z_n = 0$ for all n large.

Definition 5 (Generating function). $\forall s \in [0,1], \varphi(s) = \sum_{k \ge 0} p_k s^k = \sum_{k \ge 0} \mathbb{P}\left(\xi_i^m = k\right) s^k$.

Theorem 14 (4.3.12 Supercritical). $\mu > 1, Z_0 = 1 \implies \mathbb{P}(Z_n = 0 \text{ for some } n) = \rho$, the only solution of $\varphi(\rho) = \rho$ in [0, 1).

Theorem 15 (4.3.13). $W = \lim Z_n / \mu^n \neq 0$ iff $\sum p_k k \log k < \infty$. $\sum k^2 p_k < \infty$ is sufficient for a nontrivial limit.

Theorem 16 (4.4.2 Doob's inequality). Let X_m be sub-martingale, then

$$\bar{X}_n = \max_{0 \le m \le n} X_m^+ \tag{7}$$

 $\lambda > 0$ and $A = \{\overline{X}_n \ge \lambda\}$. Then

$$\lambda \mathbb{P}(A) \le \mathbb{E}X_n \mathbf{1}_A \le \mathbb{E}X_n^+ \tag{8}$$

Theorem 17 (4.4.4 L^p maximum inequality). If X_n is a sub-martingale, then for 1

$$\mathbb{E}(\bar{X}_n^p) \le \left(\frac{p}{p-1}\right)^p \mathbb{E}(X_n^+)^p \tag{9}$$

Theorem 18 (4.4.6 L^p convergence theorem). sup $\mathbb{E}|X_n|^p < \infty$ with p > 1, then $X_n \to X$ a.s. and in L^p .

Theorem 19 (4.4.7 Ortho of martingale increment). $\mathbb{E}X_n^2 < \infty, m \leq n, Y \in \mathcal{F}_m$ with $\mathbb{E}Y^2 < \infty$, then $\mathbb{E}((X_n - X_m)Y) = 0$. If $\ell < m < n$, then $\mathbb{E}((X_n - X_m)(X_m - X_\ell)) = 0$.

Definition 6 (Uniform integrability). UI iff

$$\lim_{M \to \infty} \left(\sup_{i \in I} \mathbb{E}\left(|X_i|; |X_i| > M \right) \right) = 0 \tag{10}$$

Theorem 20 (U.I. equivalence 4.6.7). U.I \iff Converges a.s. and in $L^1 \iff$ converges in $L^1 \iff$ there exists an integrable r.v. X with $X_n = \mathbb{E}(X \mid \mathcal{F}_n)$

Theorem 21 (4.6.8). $F_n \uparrow F_\infty$, then $\mathbb{E}(X \mid \mathcal{F}_n) \to \mathbb{E}(X \mid \mathcal{F}_\infty)$ a.s. and in L^1 .

Theorem 22 (4.6.9 Levy's 0-1 law). $\mathcal{F}_n \uparrow \mathcal{F}_\infty, A \in \mathcal{F}_\infty$, then $\mathbb{E}(\mathbf{1}_A \mid \mathcal{F}_n) \to \mathbf{1}_A$ a.s.

Theorem 23 (4.8.1). X_n U.I. implies $X_{N \wedge n}$ U.I.

Theorem 24 (4.8.2). (*Check exercise*) $\mathbb{E}|X_N| < \infty$ and $X_n \mathbf{1}_{N>n}$ U.I., then $X_{N \wedge n}$ U.I. and $\mathbb{E}X_0 \leq \mathbb{E}X_N$.

Theorem 25 (OST). Suppose $X_{N \wedge n}$ is a U.I martingale. Let $X_{\infty} = \lim_{n \to \infty} X_{N \wedge n}$ on the event $\{N = \infty\}$, Then $\mathbb{E}[X_N] = \mathbb{E}[X_0]$.

Theorem 26 (4.8.3). X_n U.I. implies for $N \leq \infty$, $\mathbb{E}X_0 \leq \mathbb{E}X_N \leq \mathbb{E}X_\infty = \mathbb{E}\lim X_n$.

Theorem 27 (4.8.7 SSRW). $\mathbb{P}(\xi = 1) = \mathbb{P}(\xi = -1) = 1/2, S_0 = x \text{ and } N = \min(n : S_n \notin (a, b)), \text{ then } X_0 = 0$

$$\mathbb{P}_x(S_N = a) = \frac{b-x}{b-a} \quad \mathbb{P}_x(S_N = b) = \frac{x-a}{b-a} \quad \mathbb{E}_x N = (b-x)(x-a) \tag{11}$$

Theorem 28 (4.8.9 ASRW). *(practice)* $\mathbb{P}(\xi = 1) = p, \mathbb{P}(\xi = -1) = q, S_0 = x \text{ and } N = \min(n : S_n \notin (a, b)), then$

- (a) $\varphi(y) = (q/p)^t$, then $\varphi(S_n)$ is martingale.
- (b) $T_z = \inf\{n : S_n = z\}$, then for a < x < b, $P_x(T_a < T_b) = \frac{\varphi(b) \varphi(x)}{\varphi(b) \varphi(a)}$ and $P_x(T_b < T_a) = \frac{\varphi(x) \varphi(a)}{\varphi(b) \varphi(a)}$
- If p > 1/2, we get

(c)
$$a < 0, \mathbb{P}(\min_n S_n \le a) = \mathbb{P}(T_a < \infty) = \left(\frac{q}{p}\right)^{-c}$$

(c) b > 0, then $\mathbb{P}(T_b < \infty) = 1$ and $\mathbb{E}T_b = \frac{b}{2p-1}$

3 Brownian motion

Definition 7 (BM). (a) Independent increment, (b) $B(s+t) - B(s) \sim \mathcal{N}(0,t)$, (c) continuous

Definition 8 (BM translation invariance). $\{B_t - B_0\}$ independent and has the same law as BW with $B_0 = 0$.

Definition 9 (BM scaling relation). $B_0 = 0$, then $B_{st} \stackrel{d}{=} t^{1/2} B_s$

Definition 10 (Markov property/non-rigorous). If $s \ge 0$, then $B(t+s) - B(s), t \ge 0$ is a Brownian motion that is independent of what happened before time s. What happened before s:

$$\mathcal{F}_s^o = \sigma \left(B_r : r \le s \right) \tag{12}$$

Infinitesimal peek at the future:

$$\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t^o \tag{13}$$

 $A \in \mathcal{F}_s^+$ if $A \in \mathcal{F}_{s+\epsilon}^+$ for any $\epsilon > 0$.

Theorem 29 (7.2.3 Bluementhal's 0-1 law). $A \in \mathcal{F}_0^+$, then for all $x \in \mathbb{R}^d$, $\mathbb{P}_x(A) \in \{0,1\}$.

Theorem 30 (7.2.4). $\tau = \inf\{t \ge 0 : B_t > 0\}, then \mathbb{P}_0 (\tau = 0) = 1.$

Theorem 31 (7.2.5). $T_0 = \inf(t > 0 : B_t = 0)$ then $P_0(T_0 = 0) = 1$.

Theorem 32 (7.2.6 Inversion symmetry). B_t starts at zero implies $X_t = tB(1/t)$ BM starts at zero.

Theorem 33 (7.2.8). B_t start at zero then with probability one, we have

$$\limsup_{t \to \infty} B_t / \sqrt{t} = \infty \quad \liminf_{t \to \infty} B_t / \sqrt{t} = -\infty$$
(14)

Lemma 2 (from class). $b > a > 0, T_a - T_b \perp T_a$ and $T_b - T_a \stackrel{d}{=} T_{b-a}$

Theorem 34 (from class/Reflection principle 7.4.2). $\mathbb{P}_0(T_a < t) = 2\mathbb{P}_0(B_t \ge a)$

Theorem 35 (from class/Zero set of BM). $Z = \{t : B_t = 0\}$. $t \in Z$ is isolated means $\exists \epsilon > 0, (t - \epsilon, t + \epsilon) \cap Z = \{t\}$. $\mathbb{P}(Z \text{ has no isolated point}) = 1$.