Math 6490 Final Review Sheet

Niuniu Zhang

September 10, 2023

1 BM and SRW

Theorem 1. Define $M_{t}=\max _{s \in[0, t]} B_{s}$ and $X_{t}=M_{t}-B_{t}$, then we have $\left(X_{t}\right)_{t \geq 0} \stackrel{d}{=}\left(\left|B_{t}\right|\right)_{t \geq 0}$.
Theorem 2 (Durrett 7.5.3). B_{t} is a martingale w.r.t \mathcal{F}_{t}. If $a<x<b$, then $\mathbb{P}_{x}\left(T_{a}<T_{b}\right)=(b-x) /(b-a)$.
Theorem 3 (Durrett 7.5.5). Let $T=\inf \left\{t: B_{t} \notin(a, b)\right\}$, where $a<0<b$, then $\mathbb{E}_{0} T=-a b$.
Theorem 4 (Skorokhod's representation theorem). If $\mathbb{E} X=0, \mathbb{E} X^{2}<\infty$, then there eixsts T for $B M$ so that $B_{T} \stackrel{d}{=} X$ and $\mathbb{E} T=E X^{2}$.
Remark 1 (How to find the coupling?). Consider the following example: Let ξ an random variable with

$$
\begin{equation*}
\mathbb{P}[\xi=1]=\mathbb{P}[\xi=-1]=\frac{1}{6} \quad \mathbb{P}[\xi=2]=\mathbb{P}[\xi=-2]=\frac{1}{3} \tag{1}
\end{equation*}
$$

Imagine we have a symmetric pair of levels, $(1,2)$ and $(-2,-1)$. In essence, we are cooking up stopping times so that the exit probability align with the distribution of ξ. Our main tool is Theorem 2, By symmetry of $(1,2)$ and $(-2,-1)$, it suffices to only consider the former.

For any $x \in(1,2)$, we wish to let $B M$ exit 1 with probability $1 / 6$ and 2 with probability $1 / 3$, that is

$$
\begin{equation*}
\frac{1}{2} \cdot \mathbb{P}_{x}\left(T_{1}<T_{2}\right)=\frac{1}{2} \cdot \frac{2-x}{2-1}=\frac{1}{6} \Longrightarrow x=\frac{5}{3} \tag{2}
\end{equation*}
$$

(half since we only get half the "picture") Thus, we know by picking BM starts at $5 / 4$ or $-5 / 4$ will have the desired results. We denote the starting point as

$$
\begin{equation*}
T_{0}=\inf \left\{t:\left|B_{t}\right|=\frac{5}{3}\right\} \tag{3}
\end{equation*}
$$

Suppose BM has hit T_{0}, to move to 2 , we define

$$
\begin{equation*}
T_{2}=\inf \left\{t \geq T_{0}: B_{t}=\frac{6}{5} B_{T_{0}}\right\} \tag{4}
\end{equation*}
$$

To move to 1, we define

$$
\begin{equation*}
T_{1}=\inf \left\{t \geq T_{0}: B_{t}=\frac{3}{5} B_{T_{0}}\right\} \tag{5}
\end{equation*}
$$

Thus, we have obtained the desired stopping time

$$
\begin{equation*}
T:=T_{1} \wedge T_{2} \tag{6}
\end{equation*}
$$

Theorem 5 (Durrett 8.1.2). X_{n} IID with distribution F, mean zero and variance one. Let $S_{n}=\sum_{n} X_{i}$, then there exists T_{n} such that $S_{n} \stackrel{d}{=} B_{T_{n}}$ and $T_{n}-T_{n-1}$ are independent and identically distributed.
Theorem 6 (Donsker's theorem/Skorohod coupling). $S(n \cdot) / \sqrt{n} \Rightarrow B(\cdot)$.
Theorem 7. Suppose L is continuous for all $f \in C[0, \infty)$, then $L(S(n \cdot) / \sqrt{n}) \Rightarrow L(B(\cdot))$.
Theorem 8 (SRW Reflection Principle, Durrett 4.9.1). If $x, y>0$, then the number of path from ($0, x$) to (n, y) that are zero at some time is equal to the number of path from $(0,-x)$ to (n, y).

2 Stochastic Calculus

2.1 Ito's Fundamentals

Definition $1\left(\mathcal{H}^{2}\right)$. $\mathcal{H}^{2}=\mathcal{H}^{2}[0, T]=L^{2}(d P \times d t)$ and $f \in \mathcal{H}^{2}$ iff $\mathbb{E}\left[\int_{0}^{T} f^{2}(\omega, t) d t\right]<\infty$.
Definition $2\left(\mathcal{H}_{0}^{2}\right) . \mathcal{H}_{0}^{2} \subseteq \mathcal{H}^{2}$ and are consisted of function of the form

$$
\begin{equation*}
f(\omega, t)=\sum_{i=0}^{n-1} a_{i}(\omega) \mathbf{1}_{\left(t_{i}<t \leq t_{i+1}\right)} \tag{7}
\end{equation*}
$$

Let $I: \mathcal{H}_{0}^{2} \rightarrow L^{2}(d P)$ to be a continuous mapping, then the above becomes

$$
\begin{equation*}
I(f)(\omega)=\sum_{i=0}^{n-1} a_{i}(\omega)\left\{B_{t_{i}+1}-B_{t_{i}}\right\} \tag{8}
\end{equation*}
$$

Definition 3 (Ito Integral).

$$
\begin{equation*}
X_{t}=\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(B_{t}^{2}-t\right) \tag{9}
\end{equation*}
$$

Lemma 1 (Density of \mathcal{H}_{0}^{2} in \mathcal{H}^{2}). $f \in \mathcal{H}^{2}[0, T]$ iff $\exists f_{n} \in \mathcal{H}_{0}^{2}[0, T]$ s.t $f_{n} \xrightarrow{L^{2}} f$ and

$$
\begin{equation*}
L^{2}(d P \times d t):=L^{2}[\Omega \times[0, T]]=\left\{f(\omega, t) \mid \mathbb{E} \int_{0}^{T} f^{2}(\omega, t) d t<\infty\right\} \tag{10}
\end{equation*}
$$

Definition $4\left(\mathcal{L}_{\text {LOC }}^{2}\right)$. The class $\mathcal{L}_{L O C}^{2}=\mathcal{L}_{\text {LOC }}^{2}[0, T]$ consists of the type of function $f: \Omega \times[0, T] \mapsto \mathbb{R}$ such that

$$
\begin{equation*}
\mathbb{P}\left(\int_{0}^{T} f^{2}(\omega, t) d t<\infty\right)=1 \tag{11}
\end{equation*}
$$

Lemma 2 (Ito's Isometry, Steele 6.1). For $f \in \mathcal{H}_{0}^{2}$, we have $\|I(f)\|_{L^{2}(d P)}=\|f\|_{L^{2}(d P \times d t)}$. Alternatively, we may write $\mathbb{E} I(f)^{2}=\mathbb{E} \int_{0}^{T} f^{2}(\omega, s) d s$. For example, we get

$$
\begin{equation*}
\mathbb{E}\left[\left(\int_{0}^{t}\left|B_{s}\right|^{1 / 2} d B_{s}\right)^{2}\right]=\mathbb{E}\left[\int_{0}^{t}\left|B_{s}\right| d s\right] \tag{12}
\end{equation*}
$$

Definition 5 (Standard Process, Steele 8.1). X_{t} is a standard process if it has the following representation

$$
\begin{equation*}
X_{t}=x_{0}+\int_{0}^{t} a(\omega, s) d s+\int_{0}^{t} b(\omega, s) d B_{s} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{P}\left(\int_{0}^{T}|a| d s<\infty\right)=1 \quad \mathbb{P}\left(\int_{0}^{T} b^{2} d s<\infty\right)=1 \Longleftrightarrow\left(b \in L_{L O C}^{2}[0, T]\right) \tag{14}
\end{equation*}
$$

Theorem 9 (Quadratic Variation of Standard Process, Steele 8.6). Let X_{t} be a standard process with

$$
\begin{equation*}
X_{t}=\int_{0}^{t} a(\omega, s) d s+\int_{0}^{t} b(\omega, s) d B_{s} \tag{15}
\end{equation*}
$$

then its quadratic varation is

$$
\begin{equation*}
\langle X\rangle_{t}=\int_{0}^{t} b^{2}(\omega, s) d s \tag{16}
\end{equation*}
$$

2.2 Useful propositions

Proposition 1 (Gaussian Integrals, Steele 7.6). If $f \in C[0, T]$, then the process defined by $X_{t}=\int_{0}^{t} f(s) d B_{s}$ is a mean zero Gaussian process with indep' increments and covariance function $\operatorname{Cov}\left(X_{s}, X_{t}\right)=\int_{0}^{s \wedge t} f^{2}(u) d u$.
Definition 6 (Local Martingale). If a process M_{t} is adapted to \mathcal{F}_{t}, then M_{t} is called a local martingale provided there is a nondecreasing sequence $\left\{\tau_{k}\right\}$ such that $\tau_{k} \uparrow \infty$ with probability one and $M_{t \wedge \tau_{k}}-M_{0}$ is true martingale.

Proposition 2 ($L_{\text {LOC }}^{2}$ function to local martingale, Steele 7.7). $f \in L_{L O C}^{2}$, then there exists a local martingale X_{t} such that

$$
\begin{equation*}
\mathbb{P}\left(X_{t}(\omega)=\int_{0}^{t} f(\omega, s) d B_{s}\right)=1 \tag{17}
\end{equation*}
$$

with localizing sequnce to be

$$
\begin{equation*}
\tau_{n}(\omega)=\inf \left\{t: \int_{0}^{t} f^{2}(\omega, s) d s \geq n \text { or } t \geq T\right\} \tag{18}
\end{equation*}
$$

Proposition 3 (Exit Probability, Steele 7.8). X_{t}, local martingale with $X_{0}=0$. Let $\tau=\inf \left\{t: X_{t}=\right.$ A or $\left.X_{t}=-B\right\}$ satisfies $\mathbb{P}(\tau<\infty)=1$, then $\mathbb{E}\left(X_{\tau}\right)=0$ and $\mathbb{P}\left(X_{\tau}=A\right)=\frac{B}{A+B}$.
Proposition 4 (Doob's analog, Steele 7.9). X_{t} local martingale and τ stopping time, then $Y_{t}=X_{t \wedge \tau}$ is also a local martingale.

Proposition 5 (Loc to Hon, Steele 7.10). X_{t} local martingale, and B is a constant such that $\left|X_{t}\right| \leq B$, then X_{t} martingale.

Proposition 6 (Loc to Hon, Steele 7.11). X_{t} non-negative local martingale with $\mathbb{E}\left|X_{0}\right|<\infty$ is also a super martingale. If $\mathbb{E} X_{T}=\mathbb{E} X_{0}$, then X_{t} is a martingale.
Proposition 7 (Martingale PDE condition, Steele 8.1). $f \in C^{1,2}\left(\mathbb{R}^{+} \times \mathbb{R}\right)$ and

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} f=0 \tag{19}
\end{equation*}
$$

then $X_{t}=f\left(t, B_{t}\right)$ is local martingale. If

$$
\begin{equation*}
\mathbb{E}\left[\int_{0}^{T}\left\{\frac{\partial f}{\partial x}\right\}^{2}\left(t, B_{t}\right) d t\right]<\infty \tag{20}
\end{equation*}
$$

then X_{t} is martingale.
Proposition 8 (Martingale PDE condition for \mathbb{R}^{d}, Steele 8.3). $f \in C^{1,2}\left(\mathbb{R}^{+}, \mathbb{R}^{d}\right)$ and $B_{t} \in \mathbb{R}^{d}$, then $f\left(t, B_{t}\right)$ is local martingale given

$$
\begin{equation*}
f_{t}(t, x)+\frac{1}{2} \Delta f(t, x)=0 \tag{21}
\end{equation*}
$$

Consequently, for $f\left(B_{t}\right), B_{t} \in \mathbb{R}^{d}$, we have

$$
\begin{equation*}
\Delta f=0 \tag{22}
\end{equation*}
$$

iff $f\left(B_{t}\right)$ local martingale.
Corollary 1 (Quadratic Varation PDE condition, Class 04/10). If $f_{t}+\frac{1}{2} f_{x x}=0$, then $f\left(\langle Z\rangle_{t}, Z_{t}\right)$ is a local martingale.

Theorem 10 (Martingale Representation Theorem, Steele 12.3). X_{t} is a martingale w.r.t \mathcal{F}_{t}. If there exists a T such that $\mathbb{E}\left(X_{T}^{2}\right)<\infty$, then there is a $\phi \in \mathcal{H}^{2}[0, T]$ such that

$$
\begin{equation*}
X_{t}=\int_{0}^{t} \phi(\omega, s) d B_{s} \tag{23}
\end{equation*}
$$

The above holds for local too.
Theorem 11 (Levy's Representation Theorem, Steele 12.4). $\phi \in L_{L O C}^{2}[0, T]$ and

$$
\begin{equation*}
X_{t}=\int_{0}^{t} \phi(\omega, s) d B_{s} \tag{24}
\end{equation*}
$$

If we have

$$
\begin{equation*}
\mathbb{P}\left(\int_{0}^{\infty} \phi^{2} d s=\infty\right)=1 \quad \tau_{t}:=\inf \left(u: \int_{0}^{u} \phi^{2} d s \geq t\right) \tag{25}
\end{equation*}
$$

then $X_{\tau_{t}}$ is $B M$.
Theorem 12 (BMC, Steele 12.5). Suppose M_{t} is a martingale. If $\mathbb{E} M_{t}^{2}<\infty$ and $\langle M\rangle_{t}=t$, then M_{t} is a standard BM.

Remark 2 (What if $\langle Z\rangle_{t} \neq t$, class 04/10). Assume $\langle Z\rangle_{t} \nearrow \infty$. Define τ_{t} to be the first time $\langle Z\rangle_{t}=t$, then we have the following consequences
(i) $\limsup Z_{t}=-\liminf Z_{t}=\infty$.
(ii) $Z_{\tau_{t}}=B_{t}$ and $\sup _{\left\{s:\langle Z\rangle_{s} \leq t\right\}} Z_{s} \stackrel{d}{=} \sup _{0 \leq s \leq t} B_{s}$.
(iii) $T_{0}=0, T_{k}=\inf \left\{t:\left|Z_{t}-Z_{T_{k}-1}\right|=1\right\}$, then $Z_{\tau_{k}}$ is BM by HW.
(iv) Define

$$
\begin{equation*}
\sigma_{M}=\inf \left\{t: Z_{s}=M\right\} \quad \sigma_{M}^{\prime}=\inf \left\{t: B_{s}=M\right\} \tag{26}
\end{equation*}
$$

then $\inf _{t \leq \sigma_{M}} Z_{t} \stackrel{d}{=} \inf _{t \leq \sigma_{M}^{\prime}} B_{t}$.
Remark 3 (L operator, Class 04/12). (i) (Space only): Let

$$
\begin{equation*}
d X_{t}=\sigma\left(X_{t}\right) d B_{t}+\mu\left(X_{t}\right) d t \tag{27}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(d X_{t}\right)^{2}=\sigma\left(X_{t}\right)^{2}\left(d B_{t}\right)^{2}=\sigma\left(X_{t}\right)^{2} d t \tag{28}
\end{equation*}
$$

Apply Ito's formula, we have

$$
\begin{align*}
d f\left(X_{t}\right) & =f^{\prime}\left(X_{t}\right) d X_{t}+\frac{1}{2} f^{\prime \prime}\left(X_{t}\right)\left(d X_{t}\right)^{2} \tag{29}\\
& =f^{\prime}\left(X_{t}\right)\left\{\sigma\left(X_{t}\right) d B_{t}+\mu\left(X_{t}\right) d t\right\}+\frac{\sigma\left(X_{t}\right)^{2}}{2} f^{\prime \prime}\left(X_{t}\right) d t \tag{30}\\
& =f^{\prime} \sigma d B_{t}+\left\{f^{\prime} \mu+\frac{\sigma^{2}}{2} f^{\prime \prime}\right\} d t \tag{31}
\end{align*}
$$

Observe that $f^{\prime} \sigma \in L_{L O C}^{2}$, by Prop 7.7, should we want $f\left(X_{t}\right)$ to be a local martingale, the other term must be gone. Recall L operator is defined to be

$$
\begin{equation*}
L f=f^{\prime} \mu+\frac{\sigma^{2}}{2} f^{\prime \prime} \tag{32}
\end{equation*}
$$

then we may conclude that $L f=0$ iff $f\left(X_{t}\right)$ is a local martingale.
(ii) (Space and time): Let

$$
\begin{equation*}
d X_{t}=\sigma\left(t, X_{t}\right) d B_{t}+\mu\left(t, X_{t}\right) d t \tag{33}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(d X_{t}\right)^{2}=\sigma\left(t, X_{t}\right)^{2} d t \tag{34}
\end{equation*}
$$

Similarly, by Ito's formula (space and time), we get

$$
\begin{align*}
d f\left(t, X_{t}\right) & =f_{t} d t+f_{x} d X_{t}+\frac{1}{2} f_{x x}\left(d X_{t}\right)^{2} \tag{35}\\
& =f_{t} d t+f_{x}\left\{\sigma d B_{t}+\mu d t\right\}+\frac{1}{2} f_{x x} \sigma^{2} d t \tag{36}\\
& =\sigma f_{x} d B_{t}+\left\{f_{t}+\mu f_{x}+\frac{\sigma^{2}}{2} f_{x x}\right\} d t \tag{37}
\end{align*}
$$

Note that $\sigma f_{x} \in L_{L O C}^{2}$, then $f\left(t, X_{t}\right)$ is a martingale iff the other terms are gone. In particular, note that

$$
\begin{equation*}
f_{t}+\mu f_{x}+\frac{\sigma^{2}}{2} f_{x x}=0 \Longleftrightarrow(d t+L) f=0 \tag{38}
\end{equation*}
$$

Theorem 13 (Existence and Uniqueness, Steele 9.1). Let $d X_{t}=\mu\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}$ with $X_{0}=x_{0}$ satisfy

$$
\begin{align*}
|\mu(t, x)-\mu(t, y)|^{2}+|\sigma(t, x)-\sigma(t, y)|^{2} & \leq K|x-y|^{2} \tag{39}\\
|\mu(t, x)|^{2}+|\sigma(t, x)|^{2} & \leq K\left(1+|x|^{2}\right) \tag{40}
\end{align*}
$$

then there exists a solution X_{t} that is uniformly bounded in L^{2}. If X_{t}, Y_{t} are both continuous L^{2} bounded solution, then they are the same almost surely.
Warning: sign of drift would change the form of M_{t}.
Theorem 14 (Simplest Girsanov Theorem, Steele 13.1). B_{t} is $\mathbb{P}-B M$ and \mathbb{Q} is induced by

$$
\begin{equation*}
X_{t}=B_{t}+\mu t \tag{41}
\end{equation*}
$$

then every bounded Borel measurable function W on $C[0, T]$ satisfies

$$
\begin{equation*}
\mathbb{E}_{\mathbb{Q}}(W)=\mathbb{E}_{\mathbb{P}}\left(W M_{T}\right) \tag{42}
\end{equation*}
$$

where M_{t} is \mathbb{P}-martingale defined by

$$
\begin{equation*}
M_{t}=\exp \left(\mu B_{t}-\mu^{2} t / 2\right) \tag{43}
\end{equation*}
$$

Theorem 15 (Removing Drift, Steele 13.2). $\mu(\omega, t)$ is a bounded, adapted process on $[0, T], B_{t}$ is a $\mathbb{P}-B M$, and X_{t} given by

$$
\begin{equation*}
X_{t}=B_{t}+\int_{0}^{t} \mu(\omega, s) d s \tag{44}
\end{equation*}
$$

The process M_{t} defined by

$$
\begin{equation*}
M_{t}=\exp \left(-\int_{0}^{t} \mu(\omega, s) d B_{s}-\frac{1}{2} \int_{0}^{t} \mu^{2}(\omega, s) d s\right) \tag{45}
\end{equation*}
$$

is a \mathbb{P}-martingale and the product $X_{t} M_{t}$ is also a \mathbb{P}-martingale. Finally, if \mathbb{Q} denotes the measure on $C[0, T]$ defined by

$$
\begin{equation*}
\mathbb{Q}(A)=\mathbb{E}_{\mathbb{Q}}\left[\mathbf{1}_{A}\right]=\mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{A} M_{T}\right] \tag{46}
\end{equation*}
$$

then X_{t} is a \mathbb{Q}-Brownian motion on $[0, T]$.

2.3 Ito's formula

Theorem 16 (Simple Ito's formula, Steele 8.1). $f \in C^{2}(\mathbb{R})$ and $f\left(B_{t}\right)$, then

$$
\begin{align*}
f\left(B_{t}\right) & =f(0)+\int_{0}^{t} f^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) d s \tag{47}\\
d f\left(B_{t}\right) & =f^{\prime}\left(B_{s}\right) d B_{s}+\frac{1}{2} f^{\prime \prime}\left(B_{s}\right) d_{s} \tag{48}
\end{align*}
$$

Note the general fact that $\left(d B_{s}\right)^{2}=d s,\left(d B_{s}\right)^{n}=0$ for $n>2$.
Theorem 17 (Ito's formula with time and space, Steele 8.2). $f \in C^{1.2}\left(\mathbb{R}^{+} \times \mathbb{R}\right)$ and $f\left(t, B_{t}\right)$, then we have

$$
\begin{align*}
f\left(t, B_{t}\right) & =f(0)+\int_{0}^{t} \frac{\partial f}{\partial x}\left(s, B_{s}\right) d B_{s}+\int_{0}^{t} \frac{\partial f}{\partial t}\left(s, B_{s}\right) d s+\frac{1}{2} \int_{0}^{t} \frac{\partial^{2} f}{\partial x^{2}}\left(s, B_{s}\right) d s \tag{49}\\
d f\left(t, B_{t}\right) & =f_{x}\left(s, B_{s}\right) d B_{s}+f_{t}\left(s, B_{s}\right) d s+\frac{1}{2} f_{x x}\left(s, B_{s}\right) d s \tag{50}
\end{align*}
$$

Theorem 18 (Vector Ito's formula, Steele 8.3). $f \in C^{1,2}\left(\mathbb{R}^{+}, \mathbb{R}^{d}\right)$ and $B_{t} \in \mathbb{R}^{d}$, then

$$
\begin{equation*}
d f\left(t, B_{t}\right)=f_{t}\left(t, B_{t}\right) d t+\nabla f\left(t, B_{t}\right) d B_{t}+\frac{1}{2} \Delta f\left(t, B_{t}\right) d t \tag{51}
\end{equation*}
$$

Theorem 19 (Local Martingale, Class 04/05). Let $Z_{t}=\int_{0}^{t} b(\omega, s) d B_{s}, b \in L_{L O C}^{2}$ and $f\left(Z_{t}\right)$. From the general fact, we have

$$
\begin{equation*}
d Z_{t}=b d B_{t} \quad\left(d Z_{t}\right)^{2}=\left(b d B_{t}\right)^{2}=b^{2} d t \tag{52}
\end{equation*}
$$

then we have

$$
\begin{align*}
d f\left(Z_{t}\right) & =f^{\prime}\left(Z_{s}\right) d Z_{s}+\frac{1}{2} f^{\prime \prime}\left(Z_{s}\right)\left(d Z_{s}\right)^{2} \tag{53}\\
& =f^{\prime}\left(Z_{s}\right) b d B_{s}+\frac{1}{2} f^{\prime \prime}\left(Z_{s}\right) b^{2} d s \tag{54}
\end{align*}
$$

Alternatively, we have

$$
\begin{equation*}
f\left(Z_{t}\right)=f\left(Z_{0}\right)+\int_{0}^{t} f^{\prime}\left(Z_{s}\right) b d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(Z_{s}\right) b^{2} d s \tag{55}
\end{equation*}
$$

Theorem 20 (Standard Process, Steele 8.4). $f \in C^{1,2}\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and

$$
\begin{equation*}
X_{t}=\int_{0}^{t} a(\omega, s) d s+\int_{0}^{t} b(\omega, s) d B_{s} \tag{56}
\end{equation*}
$$

then $d X_{s}=b d B_{s},\left(d X_{s}\right)^{2}=b^{2} d s$, so that

$$
\begin{align*}
f\left(t, X_{t}\right) & =f(0)+\int_{0}^{t} f_{t}\left(s, X_{s}\right) d s+\int_{0}^{t} f_{x}\left(s, X_{s}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} f_{x x}\left(s, X_{s}\right)\left(d X_{t}\right)^{2} \tag{57}\\
& =f(0)+\int_{0}^{t} f_{t}\left(s, X_{s}\right) d s+\int_{0}^{t} f_{x}\left(s, X_{s}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} f_{x x}\left(s, X_{s}\right) b^{2} d s \tag{58}\\
d f\left(t, X_{t}\right) & =f_{t}\left(s, X_{s}\right) d s+f_{x}\left(s, X_{s}\right) d X_{s}+\frac{1}{2} f_{x x}\left(s, X_{s}\right) b^{2} d s \tag{59}
\end{align*}
$$

Theorem 21 (Quadratic Variation, Class 04/10).

$$
\begin{align*}
f\left(\langle Z\rangle_{t}, Z_{t}\right) & =f\left(0, Z_{0}\right)+\int_{0}^{t} f_{x}\left(\langle Z\rangle_{t}, Z_{t}\right) d Z_{t}+\int_{0}^{t} f_{t}\left(\langle Z\rangle_{t}, Z_{t}\right) d t+\frac{1}{2} \int_{0}^{t} f_{x x}\left(\langle Z\rangle_{t}, Z_{t}\right)\left(d Z_{t}\right)^{2} \tag{60}\\
& =f\left(0, Z_{0}\right)+\int_{0}^{t} f_{x}\left(\langle Z\rangle_{t}, Z_{t}\right) b d B_{t}+\int_{0}^{t} f_{t}\left(\langle Z\rangle_{t}, Z_{t}\right) d t+\frac{1}{2} \int_{0}^{t} f_{x x}\left(\langle Z\rangle_{t}, Z_{t}\right) b^{2} d t \tag{61}\\
& =f\left(0, Z_{0}\right)+\int_{0}^{t} f_{x}\left(\langle Z\rangle_{t}, Z_{t}\right) b d B_{t}+\int_{0}^{t} f_{t}\left(\langle Z\rangle_{t}, Z_{t}\right) d t+\frac{1}{2} \int_{0}^{t} f_{x x}\left(\langle Z\rangle_{t}, Z_{t}\right) b^{2} d t \tag{62}\\
d f\left(\langle Z\rangle_{t}, Z_{t}\right) & =f_{x}\left(\langle Z\rangle_{t}, Z_{t}\right) b d B_{t}+f_{t}\left(\langle Z\rangle_{t}, Z_{t}\right) d t+\frac{1}{2} f_{x x}\left(\langle Z\rangle_{t}, Z_{t}\right) b^{2} d t \tag{63}
\end{align*}
$$

