Math 6490 Final Review Sheet

Niuniu Zhang

September 10, 2023

1 BM and SRW

Theorem 1. Define $M_t = \max_{s \in [0,t]} B_s$ and $X_t = M_t - B_t$, then we have $(X_t)_{t>0} \stackrel{d}{=} (|B_t|)_{t>0}$.

Theorem 2 (Durrett 7.5.3). B_t is a martingale w.r.t \mathcal{F}_t . If a < x < b, then $\mathbb{P}_x(T_a < T_b) = (b - x)/(b - a)$.

Theorem 3 (Durrett 7.5.5). Let $T = \inf\{t : B_t \notin (a, b)\}$, where a < 0 < b, then $\mathbb{E}_0 T = -ab$.

Theorem 4 (Skorokhod's representation theorem). If $\mathbb{E}X = 0$, $\mathbb{E}X^2 < \infty$, then there eixsts T for BM so that $B_T \stackrel{d}{=} X$ and $\mathbb{E}T = EX^2$.

Remark 1 (How to find the coupling?). Consider the following example: Let ξ an random variable with

$$\mathbb{P}[\xi = 1] = \mathbb{P}[\xi = -1] = \frac{1}{6} \quad \mathbb{P}[\xi = 2] = \mathbb{P}[\xi = -2] = \frac{1}{3}$$
(1)

Imagine we have a symmetric pair of levels, (1, 2) and (-2, -1). In essence, we are cooking up stopping times so that the exit probability align with the distribution of ξ . Our main tool is Theorem 2. By symmetry of (1, 2) and (-2, -1), it suffices to only consider the former.

For any $x \in (1,2)$, we wish to let BM exit 1 with probability 1/6 and 2 with probability 1/3, that is

$$\frac{1}{2} \cdot \mathbb{P}_x(T_1 < T_2) = \frac{1}{2} \cdot \frac{2-x}{2-1} = \frac{1}{6} \implies x = \frac{5}{3}$$
(2)

(half since we only get half the "picture") Thus, we know by picking BM starts at 5/4 or -5/4 will have the desired results. We denote the starting point as

$$T_0 = \inf\{t : |B_t| = \frac{5}{3}\}\tag{3}$$

Suppose BM has hit T_0 , to move to 2, we define

$$T_2 = \inf\{t \ge T_0 : B_t = \frac{6}{5}B_{T_0}\}\tag{4}$$

To move to 1, we define

$$T_1 = \inf\{t \ge T_0 : B_t = \frac{3}{5}B_{T_0}\}$$
(5)

Thus, we have obtained the desired stopping time

$$T := T_1 \wedge T_2 \tag{6}$$

Theorem 5 (Durrett 8.1.2). X_n IID with distribution F, mean zero and variance one. Let $S_n = \sum_n X_i$, then there exists T_n such that $S_n \stackrel{d}{=} B_{T_n}$ and $T_n - T_{n-1}$ are independent and identically distributed.

Theorem 6 (Donsker's theorem/Skorohod coupling). $S(n \cdot)/\sqrt{n} \Rightarrow B(\cdot)$.

Theorem 7. Suppose L is continuous for all $f \in C[0,\infty)$, then $L(S(n \cdot)/\sqrt{n}) \Rightarrow L(B(\cdot))$.

Theorem 8 (SRW Reflection Principle, Durrett 4.9.1). If x, y > 0, then the number of path from (0, x) to (n, y) that are zero at some time is equal to the number of path from (0, -x) to (n, y).

2 Stochastic Calculus

2.1 Ito's Fundamentals

Definition 1 (\mathcal{H}^2) . $\mathcal{H}^2 = \mathcal{H}^2[0,T] = L^2(dP \times dt)$ and $f \in \mathcal{H}^2$ iff $\mathbb{E}\left[\int_0^T f^2(\omega,t)dt\right] < \infty$.

Definition 2 (\mathcal{H}_0^2) . $\mathcal{H}_0^2 \subseteq \mathcal{H}^2$ and are consisted of function of the form

$$f(\omega, t) = \sum_{i=0}^{n-1} a_i(\omega) \mathbf{1}_{(t_i < t \le t_{i+1})}$$
(7)

Let $I: \mathcal{H}^2_0 \to L^2(dP)$ to be a continuous mapping, then the above becomes

$$I(f)(\omega) = \sum_{i=0}^{n-1} a_i(\omega) \{ B_{t_i+1} - B_{t_i} \}$$
(8)

Definition 3 (Ito Integral).

$$X_t = \int_0^t B_s dB_s = \frac{1}{2} (B_t^2 - t)$$
(9)

Lemma 1 (Density of \mathcal{H}_0^2 in \mathcal{H}^2). $f \in \mathcal{H}^2[0,T]$ iff $\exists f_n \in \mathcal{H}_0^2[0,T]$ s.t $f_n \xrightarrow{L^2} f$ and

$$L^{2}(dP \times dt) := L^{2}[\Omega \times [0,T]] = \{f(\omega,t) \mid \mathbb{E}\int_{0}^{T} f^{2}(\omega,t)dt < \infty\}$$

$$(10)$$

Definition 4 (\mathcal{L}^2_{LOC}) . The class $\mathcal{L}^2_{LOC} = \mathcal{L}^2_{LOC}[0,T]$ consists of the type of function $f: \Omega \times [0,T] \mapsto \mathbb{R}$ such that

$$\mathbb{P}\left(\int_{0}^{T} f^{2}(\omega, t)dt < \infty\right) = 1$$
(11)

Lemma 2 (Ito's Isometry, Steele 6.1). For $f \in \mathcal{H}_0^2$, we have $\|I(f)\|_{L^2(dP)} = \|f\|_{L^2(dP \times dt)}$. Alternatively, we may write $\mathbb{E}I(f)^2 = \mathbb{E}\int_0^T f^2(\omega, s)ds$. For example, we get

$$\mathbb{E}\left[\left(\int_0^t |B_s|^{1/2} dB_s\right)^2\right] = \mathbb{E}\left[\int_0^t |B_s| ds\right]$$
(12)

Definition 5 (Standard Process, Steele 8.1). X_t is a standard process if it has the following representation

$$X_t = x_0 + \int_0^t a(\omega, s)ds + \int_0^t b(\omega, s)dB_s$$
(13)

where

$$\mathbb{P}\left(\int_{0}^{T}|a|ds < \infty\right) = 1 \quad \mathbb{P}\left(\int_{0}^{T}b^{2}ds < \infty\right) = 1 \iff \left(b \in L^{2}_{LOC}[0,T]\right) \tag{14}$$

Theorem 9 (Quadratic Variation of Standard Process, Steele 8.6). Let X_t be a standard process with

$$X_t = \int_0^t a(\omega, s)ds + \int_0^t b(\omega, s)dB_s$$
(15)

then its quadratic variation is

$$\langle X \rangle_t = \int_0^t b^2(\omega, s) ds \tag{16}$$

2.2 Useful propositions

Proposition 1 (Gaussian Integrals, Steele 7.6). If $f \in C[0,T]$, then the process defined by $X_t = \int_0^t f(s) dB_s$ is a mean zero Gaussian process with indep' increments and covariance function $Cov(X_s, X_t) = \int_0^{s \wedge t} f^2(u) du$.

Definition 6 (Local Martingale). If a process M_t is adapted to \mathcal{F}_t , then M_t is called a local martingale provided there is a nondecreasing sequence $\{\tau_k\}$ such that $\tau_k \uparrow \infty$ with probability one and $M_{t \land \tau_k} - M_0$ is true martingale.

Proposition 2 (L^2_{LOC} function to local martingale, Steele 7.7). $f \in L^2_{LOC}$, then there exists a local martingale X_t such that

$$\mathbb{P}\left(X_t(\omega) = \int_0^t f(\omega, s) dB_s\right) = 1$$
(17)

with localizing sequnce to be

$$\tau_n(\omega) = \inf\{t : \int_0^t f^2(\omega, s) ds \ge n \text{ or } t \ge T\}$$
(18)

Proposition 3 (Exit Probability, Steele 7.8). X_t , local martingale with $X_0 = 0$. Let $\tau = \inf\{t : X_t = A \text{ or } X_t = -B\}$ satisfies $\mathbb{P}(\tau < \infty) = 1$, then $\mathbb{E}(X_{\tau}) = 0$ and $\mathbb{P}(X_{\tau} = A) = \frac{B}{A+B}$.

Proposition 4 (Doob's analog, Steele 7.9). X_t local martingale and τ stopping time, then $Y_t = X_{t \wedge \tau}$ is also a local martingale.

Proposition 5 (Loc to Hon, Steele 7.10). X_t local martingale, and B is a constant such that $|X_t| \leq B$, then X_t martingale.

Proposition 6 (Loc to Hon, Steele 7.11). X_t non-negative local martingale with $\mathbb{E}|X_0| < \infty$ is also a super martingale. If $\mathbb{E}X_T = \mathbb{E}X_0$, then X_t is a martingale.

Proposition 7 (Martingale PDE condition, Steele 8.1). $f \in C^{1,2}(\mathbb{R}^+ \times \mathbb{R})$ and

$$\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} f = 0 \tag{19}$$

then $X_t = f(t, B_t)$ is local martingale. If

$$\mathbb{E}\left[\int_0^T \{\frac{\partial f}{\partial x}\}^2(t, B_t)dt\right] < \infty$$
(20)

then X_t is martingale.

Proposition 8 (Martingale PDE condition for \mathbb{R}^d , Steele 8.3). $f \in C^{1,2}(\mathbb{R}^+, \mathbb{R}^d)$ and $B_t \in \mathbb{R}^d$, then $f(t, B_t)$ is local martingale given

$$f_t(t,x) + \frac{1}{2}\Delta f(t,x) = 0$$
 (21)

Consequently, for $f(B_t), B_t \in \mathbb{R}^d$, we have

$$\Delta f = 0 \tag{22}$$

iff $f(B_t)$ local martingale.

Corollary 1 (Quadratic Variation PDE condition, Class 04/10). If $f_t + \frac{1}{2}f_{xx} = 0$, then $f(\langle Z \rangle_t, Z_t)$ is a local martingale.

Theorem 10 (Martingale Representation Theorem, Steele 12.3). X_t is a martingale w.r.t \mathcal{F}_t . If there exists a T such that $\mathbb{E}(X_T^2) < \infty$, then there is a $\phi \in \mathcal{H}^2[0,T]$ such that

$$X_t = \int_0^t \phi(\omega, s) dB_s \tag{23}$$

The above holds for local too.

Theorem 11 (Levy's Representation Theorem, Steele 12.4). $\phi \in L^2_{LOC}[0,T]$ and

$$X_t = \int_0^t \phi(\omega, s) dB_s \tag{24}$$

If we have

$$\mathbb{P}\left(\int_0^\infty \phi^2 ds = \infty\right) = 1 \quad \tau_t := \inf\left(u : \int_0^u \phi^2 ds \ge t\right)$$
(25)

then X_{τ_t} is BM.

Theorem 12 (BMC, Steele 12.5). Suppose M_t is a martingale. If $\mathbb{E}M_t^2 < \infty$ and $\langle M \rangle_t = t$, then M_t is a standard BM.

Remark 2 (What if $\langle Z \rangle_t \neq t$, class 04/10). Assume $\langle Z \rangle_t \nearrow \infty$. Define τ_t to be the first time $\langle Z \rangle_t = t$, then we have the following consequences

- (i) $\limsup Z_t = -\liminf Z_t = \infty$.
- (ii) $Z_{\tau_t} = B_t$ and $\sup_{\{s: \langle Z \rangle_s \leq t\}} Z_s \stackrel{d}{=} \sup_{0 \leq s \leq t} B_s$.
- (iii) $T_0 = 0, T_k = \inf\{t : |Z_t Z_{T_k-1}| = 1\}, \text{ then } Z_{\tau_k} \text{ is BM by HW.}$
- (iv) Define

$$\sigma_M = \inf\{t : Z_s = M\} \quad \sigma'_M = \inf\{t : B_s = M\}$$
(26)

then $\inf_{t \leq \sigma_M} Z_t \stackrel{d}{=} \inf_{t \leq \sigma'_M} B_t$.

Remark 3 (L operator, Class 04/12). (i) (Space only): Let

$$dX_t = \sigma(X_t)dB_t + \mu(X_t)dt \tag{27}$$

then

$$(dX_t)^2 = \sigma(X_t)^2 (dB_t)^2 = \sigma(X_t)^2 dt$$
(28)

Apply Ito's formula, we have

$$df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)(dX_t)^2$$
(29)

$$= f'(X_t)\{\sigma(X_t)dB_t + \mu(X_t)dt\} + \frac{\sigma(X_t)^2}{2}f''(X_t)dt$$
(30)

$$= f'\sigma dB_t + \{f'\mu + \frac{\sigma^2}{2}f''\}dt$$
(31)

Observe that $f'\sigma \in L^2_{LOC}$, by Prop 7.7, should we want $f(X_t)$ to be a local martingale, the other term must be gone. Recall L operator is defined to be

$$Lf = f'\mu + \frac{\sigma^2}{2}f'' \tag{32}$$

then we may conclude that Lf = 0 iff $f(X_t)$ is a local martingale.

(ii) (Space and time): Let

$$dX_t = \sigma(t, X_t)dB_t + \mu(t, X_t)dt$$
(33)

then

$$(dX_t)^2 = \sigma(t, X_t)^2 dt \tag{34}$$

Similarly, by Ito's formula (space and time), we get

$$df(t, X_t) = f_t dt + f_x dX_t + \frac{1}{2} f_{xx} \left(dX_t \right)^2$$
(35)

$$= f_t dt + f_x \{ \sigma dB_t + \mu dt \} + \frac{1}{2} f_{xx} \sigma^2 dt$$
(36)

$$=\sigma f_x dB_t + \{f_t + \mu f_x + \frac{\sigma^2}{2} f_{xx}\}dt$$
(37)

Note that $\sigma f_x \in L^2_{LOC}$, then $f(t, X_t)$ is a martingale iff the other terms are gone. In particular, note that

$$f_t + \mu f_x + \frac{\sigma^2}{2} f_{xx} = 0 \iff (dt + L)f = 0$$
(38)

Theorem 13 (Existence and Uniqueness, Steele 9.1). Let $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$ with $X_0 = x_0$ satisfy

$$|\mu(t,x) - \mu(t,y)|^2 + |\sigma(t,x) - \sigma(t,y)|^2 \le K|x-y|^2$$
(39)

$$|\mu(t,x)|^{2} + |\sigma(t,x)|^{2} \le K\left(1 + |x|^{2}\right)$$
(40)

then there exists a solution X_t that is uniformly bounded in L^2 . If X_t, Y_t are both continuous L^2 bounded solution, then they are the same almost surely.

Warning: sign of **drift** would change the form of M_t .

Theorem 14 (Simplest Girsanov Theorem, Steele 13.1). B_t is \mathbb{P} -BM and \mathbb{Q} is induced by

$$X_t = B_t + \mu t \tag{41}$$

then every bounded Borel measurable function W on C[0,T] satisfies

$$\mathbb{E}_{\mathbb{Q}}(W) = \mathbb{E}_{\mathbb{P}}(WM_T) \tag{42}$$

where M_t is \mathbb{P} -martingale defined by

$$M_t = \exp\left(\mu B_t - \mu^2 t/2\right) \tag{43}$$

Theorem 15 (Removing Drift, Steele 13.2). $\mu(\omega, t)$ is a bounded, adapted process on [0, T], B_t is a \mathbb{P} -BM, and X_t given by

$$X_t = B_t + \int_0^t \mu(\omega, s) ds \tag{44}$$

The process M_t defined by

$$M_t = \exp\left(-\int_0^t \mu(\omega, s)dB_s - \frac{1}{2}\int_0^t \mu^2(\omega, s)ds\right)$$
(45)

is a \mathbb{P} -martingale and the product $X_t M_t$ is also a \mathbb{P} -martingale. Finally, if \mathbb{Q} denotes the measure on C[0,T] defined by

$$\mathbb{Q}(A) = \mathbb{E}_{\mathbb{Q}}\left[\mathbf{1}_{A}\right] = \mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{A}M_{T}\right]$$
(46)

then X_t is a \mathbb{Q} -Brownian motion on [0, T].

2.3 Ito's formula

Theorem 16 (Simple Ito's formula, Steele 8.1). $f \in C^2(\mathbb{R})$ and $f(B_t)$, then

$$f(B_t) = f(0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds$$
(47)

$$df(B_t) = f'(B_s)dB_s + \frac{1}{2}f''(B_s)d_s$$
(48)

Note the general fact that $(dB_s)^2 = ds, (dB_s)^n = 0$ for n > 2.

Theorem 17 (Ito's formula with time and space, Steele 8.2). $f \in C^{1,2}(\mathbb{R}^+ \times \mathbb{R})$ and $f(t, B_t)$, then we have

$$f(t, B_t) = f(0) + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \int_0^t \frac{\partial f}{\partial t}(s, B_s) ds + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds$$
(49)

$$df(t, B_t) = f_x(s, B_s)dB_s + f_t(s, B_s)ds + \frac{1}{2}f_{xx}(s, B_s)ds$$
(50)

Theorem 18 (Vector Ito's formula, Steele 8.3). $f \in C^{1,2}(\mathbb{R}^+, \mathbb{R}^d)$ and $B_t \in \mathbb{R}^d$, then

$$df(t, B_t) = f_t(t, B_t)dt + \nabla f(t, B_t)dB_t + \frac{1}{2}\Delta f(t, B_t)dt$$
(51)

Theorem 19 (Local Martingale, Class 04/05). Let $Z_t = \int_0^t b(\omega, s) dB_s, b \in L^2_{LOC}$ and $f(Z_t)$. From the general fact, we have

$$dZ_t = bdB_t \quad (dZ_t)^2 = (bdB_t)^2 = b^2 dt$$
 (52)

 $then \ we \ have$

$$df(Z_t) = f'(Z_s)dZ_s + \frac{1}{2}f''(Z_s)(dZ_s)^2$$
(53)

$$= f'(Z_s)bdB_s + \frac{1}{2}f''(Z_s)b^2ds$$
(54)

Alternatively, we have

$$f(Z_t) = f(Z_0) + \int_0^t f'(Z_s) b dB_s + \frac{1}{2} \int_0^t f''(Z_s) b^2 ds$$
(55)

Theorem 20 (Standard Process, Steele 8.4). $f \in C^{1,2}(\mathbb{R}^+, \mathbb{R})$ and

$$X_t = \int_0^t a(\omega, s)ds + \int_0^t b(\omega, s)dB_s$$
(56)

then $dX_s = bdB_s, (dX_s)^2 = b^2ds$, so that

$$f(t, X_t) = f(0) + \int_0^t f_t(s, X_s) ds + \int_0^t f_x(s, X_s) dX_s + \frac{1}{2} \int_0^t f_{xx}(s, X_s) \left(dX_t \right)^2$$
(57)

$$= f(0) + \int_0^t f_t(s, X_s) ds + \int_0^t f_x(s, X_s) dX_s + \frac{1}{2} \int_0^t f_{xx}(s, X_s) b^2 ds$$
(58)

$$df(t, X_t) = f_t(s, X_s)ds + f_x(s, X_s)dX_s + \frac{1}{2}f_{xx}(s, X_s)b^2ds$$
(59)

Theorem 21 (Quadratic Variation, Class 04/10).

$$f(\langle Z \rangle_{t}, Z_{t}) = f(0, Z_{0}) + \int_{0}^{t} f_{x}(\langle Z \rangle_{t}, Z_{t}) dZ_{t} + \int_{0}^{t} f_{t}(\langle Z \rangle_{t}, Z_{t}) dt + \frac{1}{2} \int_{0}^{t} f_{xx}(\langle Z \rangle_{t}, Z_{t}) (dZ_{t})^{2}$$
(60)

$$= f(0, Z_0) + \int_0^t f_x(\langle Z \rangle_t, Z_t) b dB_t + \int_0^t f_t(\langle Z \rangle_t, Z_t) dt + \frac{1}{2} \int_0^t f_{xx}(\langle Z \rangle_t, Z_t) b^2 dt$$
(61)

$$= f(0, Z_0) + \int_0^t f_x(\langle Z \rangle_t, Z_t) b dB_t + \int_0^t f_t(\langle Z \rangle_t, Z_t) dt + \frac{1}{2} \int_0^t f_{xx}(\langle Z \rangle_t, Z_t) b^2 dt$$
(62)

$$df(\langle Z \rangle_t, Z_t) = f_x(\langle Z \rangle_t, Z_t) b dB_t + f_t(\langle Z \rangle_t, Z_t) dt + \frac{1}{2} f_{xx}(\langle Z \rangle_t, Z_t) b^2 dt$$
(63)