1 Convergence and inequalities

Theorem 1 (Fubini's theorem). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the n-fold product of $\Omega_{1}, \ldots, \Omega_{n}$. If *either* $f \geq 0$ or $\int|f| d \mu<\infty$, then

$$
\begin{equation*}
\int f d \mathbb{P}=\int_{\Omega_{n}} f \ldots\left(\int_{\Omega_{1}} f d \mathbb{P}_{1}\right) \ldots f d \mathbb{P}_{n} \tag{1}
\end{equation*}
$$

Theorem 2 (Bounded convergence theorem, Durrett, p26). Let E be a set with $\mu(E)<\infty$. Suppose f_{n} vanishes on $E^{c},\left|f_{n}(x)\right| \leq M$, and $f_{n} \rightarrow f$ in measure. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int f_{n} d \mu=\int f d \mu \tag{2}
\end{equation*}
$$

Theorem 3 (Fatou's lemma). If $f_{n} \geq 0$ then

$$
\begin{equation*}
\int\left(\liminf _{n \rightarrow \infty} f_{n}\right) d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu \tag{3}
\end{equation*}
$$

Theorem 4 (Monotone convergence theorem). If $f_{n} \geq 0$ and $f_{n} \uparrow f$, then

$$
\begin{equation*}
\int f_{n} d \mu \uparrow \int f d \mu \tag{4}
\end{equation*}
$$

Theorem 5 (Dominated convergence theorem). If $f_{n} \rightarrow f$ a.e., $\left|f_{n}\right| \leq g$ for all n, and g is integrable, then

$$
\begin{equation*}
\int f_{n} d \mu \rightarrow \int f d \mu \tag{5}
\end{equation*}
$$

Theorem 6 (Thm 1.6.8, Durrett). Suppose $X_{n} \rightarrow X$ a.s. Let g, h be continuous function with
(i) $g \geq 0$ and $g(x) \rightarrow \infty$ as $|x| \rightarrow \infty$
(ii) $\frac{|h(x)|}{|g(x)|} \rightarrow 0$ as $|x| \rightarrow \infty$
(iii) $\mathbb{E} g\left(X_{n}\right) \leq K<\infty$ for all n

Then

$$
\begin{equation*}
\mathbb{E} h\left(X_{n}\right) \rightarrow \mathbb{E} h(X) \tag{6}
\end{equation*}
$$

Theorem 7 (Markov's inequality). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let X be a random variable on this space, and let $A \subseteq \mathbb{R}$ be any Borel-measurable set. Then for any non-negative real function ϕ, we have a bound:

$$
\begin{equation*}
\mathbb{P}(X \in A) \leq \frac{\mathbb{E} \phi(X)}{\inf _{x \in A} \phi(x)} \tag{7}
\end{equation*}
$$

and for nonnegative X

$$
\begin{equation*}
\mathbb{P}(X \geq a) \leq \frac{\mathbb{E} X}{a} \tag{8}
\end{equation*}
$$

Theorem 8 (Chebyshev's inequality).

$$
\begin{equation*}
\mathbb{P}(|X-b| \geq a) \leq \frac{\mathbb{E}(X-b)^{2}}{a^{2}} \tag{9}
\end{equation*}
$$

Lemma 1 (Kolmogorov's maximal inequality). Suppose $\left\{X_{n}\right\}$ are independent with mean zero and finite variance. Then

$$
\begin{equation*}
\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq x\right) \leq x^{-2} \operatorname{Var}\left(S_{n}\right) \tag{10}
\end{equation*}
$$

Theorem 9 (Kolmogorov's Three Series Theorem). $\left\{X_{n}\right\}$ independent. $A>0$ and define truncation $Y_{n}=X_{n} \mathbf{1}_{\left|X_{n}\right| \leq A}$. For $\sum_{n=1}^{\infty} X_{n}$ to converge a.e, it needs to satisfy:
(i) $\sum_{n=1}^{\infty} \mathbb{P}\left(\left|X_{n}\right|>A\right)$
(ii) $\sum_{n=1}^{\infty} \mathbb{E} Y_{n}$
(iii) $\sum_{n=1}^{\infty} \operatorname{Var} Y_{n}$

Theorem 10 (Jensen's inequality). For convex ϕ,

$$
\begin{equation*}
\mathbb{E}[\phi(X)] \leq \phi(\mathbb{E} X) \tag{11}
\end{equation*}
$$

as long as both expectations exist.
Theorem 11 (Hölder's inequality). For $1 / p+1 / q=1$,

$$
\begin{equation*}
\mathbb{E}[X Y]=\|X Y\|_{1} \leq\|X\|_{p}\|Y\|_{q} \tag{12}
\end{equation*}
$$

Corollary 1 (Cor 3.5 notes). X is random variable, $f(X, t)$ is differentiable in t, and $\mathbb{E}[f(X, t)]$ and $\mathbb{E}\left|\frac{\partial f(X, t)}{\partial t}\right|$ are bounded and continuous for t in an interval containing t_{0}, then

$$
\begin{equation*}
\frac{d}{d t} \mathbb{E} f(X, t)=\mathbb{E} \frac{\partial}{\partial t} f(X, t) \tag{13}
\end{equation*}
$$

Theorem 12 (Change of density, notes p.29). $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ smooth and invertible. Suppose $\left(X_{1}, \cdots, X_{n}\right)$ has law μ with density g, what is density of $f\left(X_{1}, \cdots, X_{n}\right)$ with law ν ? What is density of push forward ν of μ ?

For each A, we have $\mu(A)=\int_{A} g d m$, by changing coordinates to $Y=f(X)$, we have

$$
\begin{equation*}
\nu(B)=\mu\left(f^{-1} B\right)=\int_{f^{-1} B} g d m=\int_{B} g \circ f^{-1}|J|^{-1} d m \tag{14}
\end{equation*}
$$

where $|J|^{-1}$ is the inverse of the determinant of df at $f^{-1}(Y)$, so that

$$
\begin{equation*}
|J|^{-1} g \circ f^{-1} \tag{15}
\end{equation*}
$$

is the density of the push-forward.

2 Modes of Convergence

Definition 1 (a.s). $\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=1$
Definition 2 (p). $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-X\right|>\epsilon\right)=0$
Definition 3 (d). $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$

2.1 Counter Examples

We have gathered the following counterexamples:
(i) Convergence in probability \nRightarrow almost surely: Typewriter sequence, which is

$$
\begin{equation*}
f_{n}(x)=\mathbf{1}_{\left[\frac{n-2^{k}}{2^{k}}, \frac{n-2^{k}+1}{2^{k}}\right]} \tag{16}
\end{equation*}
$$

with $2^{k} \leq n<2^{k+1}$. f_{n} tends to zero in probability, but not almost everywhere.
(ii) Convergence a.s. $\nRightarrow \mathbb{E}$ converge:
(1) $\mathbf{1}_{n, n+1}$. Observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbf{1}_{n, n+1}=0 \text { a.e. and } \mathbf{1}_{n, n+1} \leq 1 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E} \mathbf{1}_{n, n+1}=1 \nrightarrow 0 \tag{18}
\end{equation*}
$$

(2) $n \mathbf{1}_{\left[0, \frac{1}{n}\right]}$. Observe that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}=0 \text { a.e. } \tag{19}
\end{equation*}
$$

but

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E} n \mathbf{1}_{\left[0, \frac{1}{n}\right]}=1 \neq \int f d x=0 \tag{20}
\end{equation*}
$$

(iii) Three series, violated only (3): $\sum \pm n^{-\alpha}$, independent sum of mean zero powers. Note that since variance of n-th term is $n^{-2 \alpha}$, then summable iff $\alpha>1 / 2$.
(iv) LDP does not work: S_{n} sum of Cauchy IID, does $\left\{S_{n} / n\right\}$ satisfy LDP? No, interval J has empty interior. S_{n} / n has the same law as a single Cauchy variable, then there is a trivial LPD with rate function identically zero.
(v) Convergence in distribution only at points CDF is continuous: X random varaible and $X_{n}=X+1 / n$. We must have $X_{n} \rightarrow X$. However, $F_{n} \nrightarrow F$, where $F_{n}(x)=\mathbb{P}\left(X_{n} \leq x\right)=F(x-1 / n)$, so $F_{n}(x) \rightarrow$ $F(x-)$.
(vi) Convergence in distribution does not imply pair converge in distribution: $X_{n}=X, Y_{n}=Y$ and X, Y IID, then $X_{n} \Rightarrow X, Y_{n} \Rightarrow Y$, but $\left(X_{n}, Y_{n}\right) \Rightarrow(X, Y)=(X, X)$, contradiction.

3 Law of large number (weak + strong)

Theorem 13 (Best WLLN). $\left\{X_{n}\right\}$ IID with $t \mathbb{P}\left(X_{1}>t\right) \rightarrow 0$ as $t \rightarrow \infty . S_{n}=\Sigma X_{i}{ }^{*}$ but ${ }^{*} \mu_{n}=\mathbb{E} X_{1} \mathbf{1}_{X_{1}<n}$. Then, $S_{n} / n-\mu_{n} \rightarrow 0$ in probability.

Theorem 14 (W/SLLN). $\left\{X_{n}\right\}$ IID with $\mathbb{E}\left|X_{1}\right|<\infty$. Denote $S_{n}=\sum_{k=1}^{n} X_{k}$ and $\mu=\mathbb{E} X_{1}$, then

$$
\begin{equation*}
\frac{S_{n}}{n} \rightarrow \mu \tag{21}
\end{equation*}
$$

in probability/almost surely. (WLLN requires $\left.\operatorname{Var} X_{n}<\infty\right)$

Proof. SLLN: 1. Instead of triangular array, truncate X_{n} at different value; $\left|X_{n}\right|=n, 2$.pass subsequence in order for upper bounds on $\mathbb{P}(|S / n-\mu|>\epsilon)$ to be summable in n.,3. Can't do this with $n_{j}=j^{\alpha}$, but doable with $n_{j}=(1+\delta)^{j}$ for δ small. 4. Similar to proof of quantitative Borel-Cantelli, apply sandwich trick as long as S_{n} increases.,5. get a sandwiched SLLN between $1-\delta, 1+\delta$ with $\delta>0$ small.

WLLN/L2: $\mathbb{E}\left(S_{n} / n\right)=\mu$, then $\mathbb{E}\left(\frac{S_{n}}{n}-\mu\right)^{2}=\operatorname{Var}\left(\frac{S_{n}}{n}\right)=\frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Var} X_{j}=\frac{C}{n} \rightarrow 0 \Longrightarrow$ converge in probability via $\mathbb{E}\left|Z_{n}\right|^{p} \geq \epsilon^{p} \mathbb{P}\left(\left|Z_{n}\right| \geq \epsilon\right)$.

Theorem 15 (Borel-Cantelli Lemma I). If $\sum_{n} \mathbb{P}\left(A_{n}\right)<\infty$, then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=0$.
Theorem 16 (Borel-Cantelli Lemma II). $\left\{A_{n}\right\}$ independent. If $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$, then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$.
Theorem 17 (Borel-Cantelli Lemma II-quantitative). $\left\{A_{n}\right\}$ pairwise independent. If $\sum_{n} \mathbb{P}\left(A_{n}\right)=\infty$, then

$$
\begin{equation*}
\frac{\sum_{1}^{n} \mathbf{1}_{A_{k}}}{\sum_{1}^{n} \mathbb{P}\left(A_{k}\right)} \rightarrow \mathbf{1} \tag{22}
\end{equation*}
$$

almost surely as $n \rightarrow \infty$.
Theorem 18 (HW Borel-Cantelli). If $\mathbb{P}\left(A_{n}\right)<1$ for all n and $\mathbb{P}\left(\cup_{n} A_{n}\right)=1$, then $\mathbb{P}\left(A_{n}\right.$ i.o. $)=1$.

4 Large Deviation

The range $S_{n}>a n$ with $a>\mu$ fixed and $n \rightarrow \infty$ is called a large deviation. If $\mathbb{E} \exp \left\{\lambda X_{1}\right\}$ exists for some $\lambda>0$, then:

1. Compute an upper bound, depending on λ, using Markov's inequality
2. Optimize in λ, which for some positive function h, it yields

$$
\begin{equation*}
\mathbb{P}\left(S_{n}>a n\right) \leq \exp (-h(a) n) \tag{23}
\end{equation*}
$$

Sharp in the sense that

$$
\begin{equation*}
n^{-1} \log \mathbb{P}\left(S_{n}>a n\right) \rightarrow h(a) \tag{24}
\end{equation*}
$$

3. Find an event. whose probability we can compute, contained in the event $\left\{S_{n}>a n\right\}$ as the lower bound for $\mathbb{P}\left(S_{n}>\right.$ an $)$

Formally, we have

$$
\begin{align*}
\mathbb{P}\left(S_{n}>a n\right) & \leq e^{-\lambda a n} \mathbb{E} e^{\lambda S_{n}} \tag{25}\\
\frac{1}{n} \log \mathbb{P}\left(S_{n}>a n\right) & \leq-\lambda a+\psi(\lambda) \tag{26}
\end{align*}
$$

with $\psi(\lambda)=\log \phi(\lambda)=\log \mathbb{E} e^{\lambda X_{1}}$. Optimize over λ to get $\lambda_{0}(a)$, define the rate function $I \geq 0$ by

$$
\begin{equation*}
I(a)=a \lambda_{0}(a)-\psi\left(\lambda_{0}(a)\right)=\sup _{\lambda} a \lambda-\psi(\lambda) \tag{27}
\end{equation*}
$$

It leads to the final result

$$
\begin{align*}
\frac{1}{n} \log \mathbb{P}\left(S_{n}>a n\right) & \leq-I(a) \tag{28}\\
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n}>a n\right) & =-I(a) \tag{29}
\end{align*}
$$

5 Central Limit Theorem

Theorem 19 (CLT for IID). $\left\{X_{n}\right\}$ IID with $\mathbb{E} X_{1}=\mu$, $\operatorname{Var}\left(X_{1}\right)=\sigma^{2} \in(0, \infty)$. Then

$$
\begin{equation*}
\frac{S_{n}-n \mu}{\sqrt{\sigma^{2} n}} \Longrightarrow \chi \tag{30}
\end{equation*}
$$

Theorem 20 (Lindeberg-Feller CLT). $\left\{X_{n, k}: 1 \leq k \leq n<\infty\right\}$ triangular array, with indenepdence between row. Assume mean zero and
(i) $\sum_{k=1}^{n} \mathbb{E} X_{n, k}^{2} \rightarrow \sigma^{2}>0$
(ii) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mathbb{E} X_{n, k}^{2} \mathbf{1}_{\left|X_{n, k}\right|>\epsilon}=0$

Then $S_{n}=\sum_{k=1}^{n} X_{n, k} \rightarrow \sigma_{\chi}$ in distribution.

6 Total Variation distance

Definition 4 (TVD). Let μ, ν be measure on (Ω, \mathcal{F}), then

$$
\begin{equation*}
\|\mu-\nu\|_{T V}=\sup _{A \in \mathcal{F}} \mu(A)-\nu(A) \tag{31}
\end{equation*}
$$

Remark 1. If Ω is countable, say $\mathbb{Z}^{+} \cup\{0\}$, then

$$
\begin{align*}
\|\mu-\nu\|_{T V} & =\sum_{x: \mu(x)>\nu(v)} \mu(x)-\nu(x) \tag{32}\\
& =\frac{1}{2} \sum_{x}|\mu(x)-\nu(x)| \tag{33}
\end{align*}
$$

and note that if p is the mean (not probability) for each variable, then

$$
\begin{equation*}
\|\operatorname{Ber}(p)-\operatorname{Pois}(p)\|_{T V}=p\left(1-e^{-p}\right) \leq p^{2} \tag{34}
\end{equation*}
$$

Lemma 2. μ, ν are measures, then push forward measures $\mu_{f}=\mu \circ f^{-1}$ and ν_{f} satisfy $\left\|\mu_{f}-\nu_{f}\right\|_{T V} \leq$ $\|\mu-\nu\|_{T V}$. If μ_{i}, ν_{i} are measures on $\left(\Omega_{i}, \mathcal{F}_{i}\right)$, then

$$
\begin{equation*}
\left\|\mu_{1} * \mu_{2}-\nu_{1} * \nu_{2}\right\|_{T V} \leq\left\|\mu_{1}-\nu_{1}\right\|+\left\|\mu_{2}-\nu_{2}\right\| \tag{35}
\end{equation*}
$$

7 Characteristic functions

Definition 5. We say that a family $\left\{\mu_{\alpha}: \alpha \in A\right\}$ of probability measures on a space Ω is tight if for every $\epsilon>0$ there is a compact set K such that $\mu_{\alpha}\left(K^{c}\right)<\epsilon$ simultaneously for every $\alpha \in A$.

Theorem 21 (Equicontinuity iff tightness). $\left\{\mu_{\alpha}\right\}$ with corresponding $\left\{\phi_{\alpha}\right\}$. Then $\left\{\mu_{\alpha}\right\}$ is tight iff $\left\{\phi_{\alpha}\right\}$ is equicontinuous at zero, i.e. for all $\epsilon>0, \exists \delta>0$ s.t. simultaneously for all α, we have $\left|\phi_{\alpha}(t)-1\right|<\epsilon$ if $|t-0|<\delta$.

Theorem 22. A family of measures is tight if and only if every sequence of measures has a sub-sequential limit in distribution.

Definition 6. The characteristic function ϕ of a random variable X whose law μ has cdf F is the function $t \mapsto \mathbb{E} e^{i t X}$. It has the following properties:
(i) $\phi(t)=0$, but $t \neq 0$ implies random variable is discrete
(ii) $\phi(0)=1,|\phi(t)| \leq 1$.
(iii) $\phi_{F * G}=\phi_{F} \cdot \phi_{G}$

Theorem 23 (Inversion formula). μ, ϕ_{μ}, then

$$
\begin{equation*}
\mu(a, b)+\frac{1}{2} \mu\{a, b\}=\frac{1}{2 \pi} \lim _{T \rightarrow \infty} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \phi_{\mu}(t) d t \tag{36}
\end{equation*}
$$

Remark 2. In discrete case, we have

$$
\begin{equation*}
\mathbb{P}(X=n)=\left\langle\phi, \psi_{n}=e^{i n x}\right\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi(x) \overline{e^{i n x}} d x \tag{37}
\end{equation*}
$$

i.e., suppose we want to find $\mathbb{P}(X=n)$ for some discrete random variable, then we would compute $\left\langle\phi, e^{i n x}\right\rangle$. If ϕ is integrable, i.e., $\int|\phi(t)| d t<\infty$, then μ has continuous density

$$
\begin{equation*}
f(y)=\frac{1}{2 \pi} \int_{\mathbb{R}} \phi(t) e^{-i t y} d t \tag{38}
\end{equation*}
$$

Theorem 24 (Continuity theorem). $\left\{\mu_{n}\right\}$ with c.f ϕ_{n}, then
(i) $\mu_{n} \rightarrow \mu$ in distribution for some μ, then $\phi_{n}(t) \rightarrow \phi_{\infty}(t)$ pointwise, where ϕ_{∞} is the characteristic function of μ.
(ii) If $\phi_{n} \rightarrow \phi$ pointwise for some ϕ that is continuous at zero, then $\mu_{n} \rightarrow \mu$ in distribution where $\mu \sim \phi$.

8 Poisson process

Theorem 25 (Law of rare events). For each n, let $X_{n, m}, 1 \leq m \leq n$ be independent random variables with

$$
\begin{equation*}
\mathbb{P}\left(X_{n, m}=1\right)=p_{n, m}, p\left(X_{n, m}=0\right)=1-p_{n, m} \tag{39}
\end{equation*}
$$

Suppose
(i) $\sum_{m=1}^{n} p_{n, m} \rightarrow \lambda \in(0, \infty)$
(ii) $\max _{1 \leq m \leq n} p_{n, m} \rightarrow 0$
then $S_{n} \Rightarrow Z$, where $Z \sim \operatorname{Poisson}(\lambda)$.
Definition 7 (Poisson on \mathbb{R}^{+}). $N(s, t)=N(t)-N(s)$ is a Poisson rv with mean $(t-s) \lambda$. For disjoint intervals, say $\left\{I_{n}\right\}, N\left(I_{j}\right), N\left(I_{k}\right)$ are independent for all j, k.

9 Simple Random Walk

Definition 8 (Stopping time). τ taking values in $\mathbb{Z}^{+} \cup\{+\infty\}$ such that for all $n,\{\tau \leq n\} \in \mathcal{F}_{n}$.
Proposition 1. τ is a stopping time iff for all $n,\{\tau=n\} \in \mathcal{F}_{n}$
Theorem 26 (Wald's first equation). $\left\{X_{n}\right\}$ IID with $\mathbb{E}\left|X_{1}\right|<\infty . \tau$ a stopping time with $\mathbb{E} \tau<\infty$, then

$$
\begin{equation*}
\mathbb{E} S_{\tau}=\mathbb{E} \tau \mathbb{E} X_{1} \tag{40}
\end{equation*}
$$

Theorem 27 (Wald's second equation). $\left\{X_{n}\right\}$ IID with $\mathbb{E} X_{n}=0$ and $\operatorname{Var}\left(X_{1}\right)<\infty$. If $\mathbb{E} \tau<\infty$, then

$$
\begin{equation*}
\mathbb{E}\left(S_{\tau}\right)^{2}=\operatorname{Var}\left(X_{1}\right) \mathbb{E} \tau \tag{41}
\end{equation*}
$$

Theorem 28 (Wald's third equation). $\left\{X_{n}\right\}$ IID with $\mathbb{E} e^{\theta X_{1}}=\phi(\theta)<\infty$. If τ is a.s. bounded by L, that is

$$
\begin{equation*}
\phi(\theta)^{-n} e^{\theta S_{n}} \mathbf{1}_{\tau \geq n} \leq L \tag{42}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathbb{E}\left[\phi(\theta)^{-\tau} e^{\theta S_{\tau}}\right]=1 \tag{43}
\end{equation*}
$$

10 Common Distribution

(i) Bernoulli: $\mathbb{P}(X=1)=p, \mathbb{E} X=\mathbb{E} X^{k}=p, \operatorname{Var} X=p(1-p), \phi(t)=1-p+p e^{i t}$
(ii) Binomial: $(n, p), \mathbb{P}(X=i)=\binom{n}{i} p^{i}(1-p)^{n-i}, \mathbb{E} X=n p, \operatorname{Var} X=n p(1-p), \phi(t)=\left(1-p+p e^{i t}\right)^{n}$
(iii) Geometric: $(p), \mathbb{P}(X=i)=p(1-p)^{i-1}, \mathbb{E} X=\frac{1}{p}, \operatorname{Var} X=\frac{1-p}{p^{2}}, \phi(t)=\frac{p e^{i t}}{1-(1-p) e^{i t}}$
(iv) Poisson: $(\lambda), \mathbb{P}(X=i)=e^{-\lambda} \lambda^{i} / i$!, $\phi(t)=\exp \left[\lambda\left(e^{i t}-1\right)\right]$
(v) Uniform: $x \in(a, b), f(x)=\frac{1}{b-a}, \mathbb{E} X=\frac{a+b}{2}, \operatorname{Var} X=\frac{(b-a)^{2}}{12}, \phi(t)=\frac{e^{i t b}-e^{i t a}}{i t(b-a)}$
(vi) Normal: $\left(\mu, \sigma^{2}\right), x \in \mathbb{R}, f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} / 2 \sigma^{2}}, \mathbb{E} X=\mu, \operatorname{Var}(X)=\sigma^{2}, \phi(t)=\exp \left(i \mu t-\sigma^{2} t^{2} / 2\right)$
(vii) Exponential: $\lambda, x>0, f(x)=\lambda e^{-\lambda x}, \mathbb{E} X=\frac{1}{\lambda}, \operatorname{Var} X=\frac{1}{\lambda^{2}}, P(X>x)=e^{-\lambda x}, \phi(t)=\frac{1}{1-i t \lambda^{-1}}$
(viii) Cauchy: $x \in \mathbb{R}, f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$, moment DNE, $\phi(t)=e^{-|t|}$
(ix) Compound Poisson c.f.: $S=\sum_{i=1}^{N} X_{i}, N \sim \operatorname{Poisson}(\lambda)$ and $X_{1} \sim \phi(t)$, then $S \sim \exp (\lambda(\phi(t)-1))$

11 Trickery

(i) X is a continuous random variable with density f, then $\mathbb{E}(X-\mu)^{k}=\int(x-\mu)^{k} f(x) d x$
(ii) $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$
(iii) If X, Y are independent, X, Y has pdf f, g respectively, then $X+Y$ has pdf h with $h(z)=\int f(x) g(z-$ $x) d x$
(iv) Suppose X has pdf f or PMF P_{n}, then $\phi(t)=\mathbb{E} e^{i t X}=\int e^{i t x} f d x$ or $\sum e^{i t n} P_{n}$

