1 Convergence and inequalities

Theorem 1 (Fubini's theorem). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be the n-fold product of $\Omega_1, ..., \Omega_n$. If *either* $f \geq 0$ or $\int |f| d\mu < \infty$, then

$$\int f d\mathbb{P} = \int_{\Omega_n} f...(\int_{\Omega_1} f d\mathbb{P}_1)...f d\mathbb{P}_n \tag{1}$$

Theorem 2 (Bounded convergence theorem, Durrett, p26). Let *E* be a set with $\mu(E) < \infty$. Suppose f_n vanishes on E^c , $|f_n(x)| \leq M$, and $f_n \to f$ in measure. Then

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu \tag{2}$$

Theorem 3 (Fatou's lemma). If $f_n \ge 0$ then

$$\int \left(\liminf_{n \to \infty} f_n\right) d\mu \le \liminf_{n \to \infty} \int f_n d\mu \tag{3}$$

Theorem 4 (Monotone convergence theorem). If $f_n \ge 0$ and $f_n \uparrow f$, then

$$\int f_n d\mu \uparrow \int f d\mu \tag{4}$$

Theorem 5 (Dominated convergence theorem). If $f_n \to f$ a.e., $|f_n| \leq g$ for all n, and g is integrable, then

$$\int f_n d\mu \to \int f d\mu \tag{5}$$

Theorem 6 (Thm 1.6.8, Durrett). Suppose $X_n \to X$ a.s. Let g, h be continuous function with

- (i) $g \ge 0$ and $g(x) \to \infty$ as $|x| \to \infty$ (ii) $\frac{|h(x)|}{|q(x)|} \to 0$ as $|x| \to \infty$
- (iii) $\mathbb{E}g(X_n) \leq K < \infty$ for all n

Then

$$\mathbb{E}h(X_n) \to \mathbb{E}h(X) \tag{6}$$

Theorem 7 (Markov's inequality). Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let X be a random variable on this space, and let $A \subseteq \mathbb{R}$ be any Borel-measurable set. Then for any non-negative real function ϕ , we have a bound:

$$\mathbb{P}(X \in A) \le \frac{\mathbb{E}\phi(X)}{\inf_{x \in A} \phi(x)} \tag{7}$$

and for nonnegative X

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}X}{a} \tag{8}$$

Theorem 8 (Chebyshev's inequality).

$$\mathbb{P}\left(|X-b| \ge a\right) \le \frac{\mathbb{E}\left(X-b\right)^2}{a^2} \tag{9}$$

Lemma 1 (Kolmogorov's maximal inequality). Suppose $\{X_n\}$ are independent with mean zero and finite variance. Then

$$\mathbb{P}\left(\max_{1\le k\le n} |S_k| \ge x\right) \le x^{-2} \operatorname{Var}(S_n) \tag{10}$$

Theorem 9 (Kolmogorov's Three Series Theorem). $\{X_n\}$ independent. A > 0 and define truncation $Y_n = X_n \mathbf{1}_{|X_n| \le A}$. For $\sum_{n=1}^{\infty} X_n$ to converge a.e, it needs to satisfy:

- (i) $\sum_{n=1}^{\infty} \mathbb{P}(|X_n| > A)$
- (*ii*) $\sum_{n=1}^{\infty} \mathbb{E}Y_n$
- (iii) $\sum_{n=1}^{\infty} VarY_n$

Theorem 10 (Jensen's inequality). For convex ϕ ,

$$\mathbb{E}[\phi(X)] \le \phi(\mathbb{E}X) \tag{11}$$

as long as both expectations exist.

Theorem 11 (Hölder's inequality). For 1/p + 1/q = 1,

$$\mathbb{E}[XY] = ||XY||_1 \le ||X||_p ||Y||_q \tag{12}$$

Corollary 1 (Cor 3.5 notes). X is random variable, f(X,t) is differentiable in t, and $\mathbb{E}[f(X,t)]$ and $\mathbb{E}\left|\frac{\partial f(X,t)}{\partial t}\right|$ are bounded and continuous for t in an interval containing t_0 , then

$$\frac{d}{dt}\mathbb{E}f(X,t) = \mathbb{E}\frac{\partial}{\partial t}f(X,t)$$
(13)

Theorem 12 (Change of density, notes p.29). $f : \mathbb{R}^n \to \mathbb{R}^n$ smooth and invertible. Suppose (X_1, \dots, X_n) has law μ with density g, what is density of $f(X_1, \dots, X_n)$ with law ν ? What is density of push forward ν of μ ?

For each A, we have $\mu(A) = \int_A g dm$, by changing coordinates to Y = f(X), we have

$$\nu(B) = \mu\left(f^{-1}B\right) = \int_{f^{-1}B} g dm = \int_B g \circ f^{-1} |J|^{-1} dm$$
(14)

where $|J|^{-1}$ is the inverse of the determinant of df at $f^{-1}(Y)$, so that

$$|J|^{-1}g \circ f^{-1} \tag{15}$$

is the density of the push-forward.

2 Modes of Convergence

Definition 1 (a.s). $\mathbb{P}(\lim_{n\to\infty} X_n = X) = 1$ **Definition 2** (p). $\lim_{n\to\infty} \mathbb{P}(|X_n - X| > \epsilon) = 0$ **Definition 3** (d). $\lim_{n\to\infty} F_n(x) = F(x)$

2.1 Counter Examples

We have gathered the following counterexamples:

(i) Convergence in probability \implies almost surely: Typewriter sequence, which is

$$f_n(x) = \mathbf{1}_{\left[\frac{n-2^k}{2^k}, \frac{n-2^k+1}{2^k}\right]}$$
(16)

with $2^k \leq n < 2^{k+1}$. f_n tends to zero in probability, but not almost everywhere.

- (ii) Convergence a.s. $\implies \mathbb{E}$ converge:
 - (1) $\mathbf{1}_{n,n+1}$. Observe that

$$\lim_{n \to \infty} \mathbf{1}_{n,n+1} = 0 \text{ a.e. and } \mathbf{1}_{n,n+1} \le 1$$
(17)

and

$$\lim_{n \to \infty} \mathbb{E} \mathbf{1}_{n,n+1} = 1 \not \to 0 \tag{18}$$

(2) $n\mathbf{1}_{[0,\frac{1}{n}]}$. Observe that

$$\lim_{n \to \infty} f_n = 0 \text{ a.e.} \tag{19}$$

but

$$\lim_{n \to \infty} \mathbb{E}n\mathbf{1}_{\left[0, \frac{1}{n}\right]} = 1 \neq \int f dx = 0$$
⁽²⁰⁾

- (iii) Three series, violated only (3): $\sum \pm n^{-\alpha}$, independent sum of mean zero powers. Note that since variance of *n*-th term is $n^{-2\alpha}$, then summable iff $\alpha > 1/2$.
- (iv) LDP does not work: S_n sum of Cauchy IID, does $\{S_n/n\}$ satisfy LDP? No, interval J has empty interior. S_n/n has the same law as a single Cauchy variable, then there is a trivial LPD with rate function identically zero.
- (v) Convergence in distribution only at points CDF is continuous: X random variable and $X_n = X + 1/n$. We must have $X_n \to X$. However, $F_n \not\to F$, where $F_n(x) = \mathbb{P}(X_n \le x) = F(x - 1/n)$, so $F_n(x) \to F(x-)$.
- (vi) Convergence in distribution does not imply pair converge in distribution: $X_n = X, Y_n = Y$ and X, YIID, then $X_n \Rightarrow X, Y_n \Rightarrow Y$, but $(X_n, Y_n) \Rightarrow (X, Y) = (X, X)$, contradiction.

3 Law of large number (weak + strong)

Theorem 13 (Best WLLN). $\{X_n\}$ IID with $t\mathbb{P}(X_1 > t) \to 0$ as $t \to \infty$. $S_n = \Sigma X_i$ *but* $\mu_n = \mathbb{E}X_1 \mathbf{1}_{X_1 < n}$. Then, $S_n/n - \mu_n \to 0$ in probability.

Theorem 14 (W/SLLN). $\{X_n\}$ IID with $\mathbb{E}|X_1| < \infty$. Denote $S_n = \sum_{k=1}^n X_k$ and $\mu = \mathbb{E}X_1$, then

$$\frac{S_n}{n} \to \mu \tag{21}$$

in probability/almost surely. (WLLN requires $VarX_n < \infty$)

Proof. SLLN: 1. Instead of triangular array, truncate X_n at different value; $|X_n| = n$, 2.pass subsequence in order for upper bounds on $\mathbb{P}(|S/n - \mu| > \epsilon)$ to be summable in n, 3. Can't do this with $n_j = j^{\alpha}$, but doable with $n_j = (1 + \delta)^j$ for δ small. 4. Similar to proof of quantitative Borel-Cantelli, apply sandwich trick as long as S_n increases., 5. get a sandwiched SLLN between $1 - \delta, 1 + \delta$ with $\delta > 0$ small.

trick as long as S_n increases.,5. get a sandwiched SLLN between $1 - \delta$, $1 + \delta$ with $\delta > 0$ small. **WLLN/L2**: $\mathbb{E}(S_n/n) = \mu$, then $\mathbb{E}\left(\frac{S_n}{n} - \mu\right)^2 = \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{1}{n^2}\sum_{j=1}^n \operatorname{Var} X_j = \frac{C}{n} \to 0 \implies$ converge in probability via $\mathbb{E}|Z_n|^p \ge \epsilon^p \mathbb{P}\left(|Z_n| \ge \epsilon\right)$.

Theorem 15 (Borel-Cantelli Lemma I). If $\sum_{n} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(A_n i.o.) = 0$.

Theorem 16 (Borel-Cantelli Lemma II). $\{A_n\}$ independent. If $\sum_n \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(A_n i.o.) = 1$.

Theorem 17 (Borel-Cantelli Lemma II-quantitative). $\{A_n\}$ pairwise independent. If $\sum_n \mathbb{P}(A_n) = \infty$, then

$$\frac{\sum_{1}^{n} \mathbf{1}_{A_{k}}}{\sum_{1}^{n} \mathbb{P}(A_{k})} \to \mathbf{1}$$
(22)

almost surely as $n \to \infty$.

Theorem 18 (HW Borel-Cantelli). If $\mathbb{P}(A_n) < 1$ for all n and $\mathbb{P}(\bigcup_n A_n) = 1$, then $\mathbb{P}(A_n \ i.o.) = 1$.

4 Large Deviation

The range $S_n > an$ with $a > \mu$ fixed and $n \to \infty$ is called a **large deviation**. If $\mathbb{E} \exp{\{\lambda X_1\}}$ exists for some $\lambda > 0$, then:

- 1. Compute an upper bound, depending on λ , using Markov's inequality
- 2. Optimize in λ , which for some positive function h, it yields

$$\mathbb{P}(S_n > an) \le \exp(-h(a)n) \tag{23}$$

Sharp in the sense that

$$n^{-1}\log \mathbb{P}(S_n > an) \to h(a)$$
 (24)

3. Find an event. whose probability we can compute, contained in the event $\{S_n > an\}$ as the lower bound for $\mathbb{P}(S_n > an)$

Formally, we have

 $\mathbb{P}(S_n > an) \le e^{-\lambda an} \mathbb{E}e^{\lambda S_n} \tag{25}$

$$\frac{1}{n}\log\mathbb{P}(S_n > an) \le -\lambda a + \psi(\lambda) \tag{26}$$

with $\psi(\lambda) = \log \phi(\lambda) = \log \mathbb{E}e^{\lambda X_1}$. Optimize over λ to get $\lambda_0(a)$, define the rate function $I \ge 0$ by

$$I(a) = a\lambda_0(a) - \psi(\lambda_0(a)) = \sup_{\lambda} a\lambda - \psi(\lambda)$$
(27)

It leads to the final result

$$\frac{1}{n}\log\mathbb{P}(S_n > an) \le -I(a) \tag{28}$$

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n > an) = -I(a)$$
⁽²⁹⁾

5 Central Limit Theorem

Theorem 19 (CLT for IID). $\{X_n\}$ IID with $\mathbb{E}X_1 = \mu$, $Var(X_1) = \sigma^2 \in (0, \infty)$. Then

$$\frac{S_n - n\mu}{\sqrt{\sigma^2 n}} \implies \chi \tag{30}$$

Theorem 20 (Lindeberg-Feller CLT). $\{X_{n,k} : 1 \leq k \leq n < \infty\}$ triangular array, with indenepdence between row. Assume mean zero and

- (i) $\sum_{k=1}^{n} \mathbb{E}X_{n,k}^2 \to \sigma^2 > 0$
- (*ii*) $\lim_{n\to\infty}\sum_{k=1}^{n} \mathbb{E}X_{n,k}^{2} \mathbf{1}_{|X_{n,k}|>\epsilon} = 0$

Then $S_n = \sum_{k=1}^n X_{n,k} \to \sigma_{\chi}$ in distribution.

6 Total Variation distance

Definition 4 (TVD). Let μ, ν be measure on (Ω, \mathcal{F}) , then

$$\|\mu - \nu\|_{TV} = \sup_{A \in \mathcal{F}} \mu(A) - \nu(A)$$
 (31)

Remark 1. If Ω is countable, say $\mathbb{Z}^+ \cup \{0\}$, then

$$\|\mu - \nu\|_{TV} = \sum_{x:\mu(x) > \nu(v)} \mu(x) - \nu(x)$$
(32)

$$= \frac{1}{2} \sum_{x} |\mu(x) - \nu(x)|$$
(33)

and note that if p is the **mean (not probability)** for each variable, then

$$||Ber(p) - Pois(p)||_{TV} = p(1 - e^{-p}) \le p^2$$
(34)

Lemma 2. μ, ν are measures, then push forward measures $\mu_f = \mu \circ f^{-1}$ and ν_f satisfy $\|\mu_f - \nu_f\|_{TV} \leq \|\mu - \nu\|_{TV}$. If μ_i, ν_i are measures on $(\Omega_i, \mathcal{F}_i)$, then

$$\|\mu_1 * \mu_2 - \nu_1 * \nu_2\|_{TV} \le \|\mu_1 - \nu_1\| + \|\mu_2 - \nu_2\|$$
(35)

7 Characteristic functions

Definition 5. We say that a family $\{\mu_{\alpha} : \alpha \in A\}$ of probability measures on a space Ω is tight if for every $\epsilon > 0$ there is a compact set K such that $\mu_{\alpha}(K^c) < \epsilon$ simultaneously for every $\alpha \in A$.

Theorem 21 (Equicontinuity iff tightness). $\{\mu_{\alpha}\}$ with corresponding $\{\phi_{\alpha}\}$. Then $\{\mu_{\alpha}\}$ is tight iff $\{\phi_{\alpha}\}$ is equicontinuous at zero, i.e. for all $\epsilon > 0, \exists \delta > 0$ s.t. simultaneously for all α , we have $|\phi_{\alpha}(t) - 1| < \epsilon$ if $|t - 0| < \delta$.

Theorem 22. A family of measures is tight if and only if every sequence of measures has a sub-sequential limit in distribution.

Definition 6. The characteristic function ϕ of a random variable X whose law μ has cdf F is the function $t \mapsto \mathbb{E}e^{itX}$. It has the following properties:

- (i) $\phi(t) = 0$, but $t \neq 0$ implies random variable is discrete
- (*ii*) $\phi(0) = 1, |\phi(t)| \le 1.$
- (*iii*) $\phi_{F*G} = \phi_F \cdot \phi_G$

Theorem 23 (Inversion formula). μ, ϕ_{μ} , then

$$\mu(a,b) + \frac{1}{2}\mu\{a,b\} = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_{\mu}(t) dt$$
(36)

Remark 2. In discrete case, we have

$$\mathbb{P}(X=n) = \langle \phi, \psi_n = e^{inx} \rangle = \frac{1}{2\pi} \int_0^{2\pi} \phi(x) \overline{e^{inx}} dx \tag{37}$$

i.e., suppose we want to find $\mathbb{P}(X = n)$ for some discrete random variable, then we would compute $\langle \phi, e^{inx} \rangle$. If ϕ is integrable, i.e., $\int |\phi(t)| dt < \infty$, then μ has continuous density

$$f(y) = \frac{1}{2\pi} \int_{\mathbb{R}} \phi(t) e^{-ity} dt$$
(38)

Theorem 24 (Continuity theorem). $\{\mu_n\}$ with c.f ϕ_n , then

- (i) $\mu_n \to \mu$ in distribution for some μ , then $\phi_n(t) \to \phi_\infty(t)$ pointwise, where ϕ_∞ is the characteristic function of μ .
- (ii) If $\phi_n \to \phi$ pointwise for some ϕ that is continuous at zero, then $\mu_n \to \mu$ in distribution where $\mu \sim \phi$.

8 Poisson process

Theorem 25 (Law of rare events). For each n, let $X_{n,m}$, $1 \le m \le n$ be independent random variables with

$$\mathbb{P}(X_{n,m} = 1) = p_{n,m}, p(X_{n,m} = 0) = 1 - p_{n,m}$$
(39)

Suppose

- (i) $\sum_{m=1}^{n} p_{n,m} \to \lambda \in (0,\infty)$
- (*ii*) $\max_{1 \le m \le n} p_{n,m} \to 0$
- then $S_n \Rightarrow Z$, where $Z \sim Poisson(\lambda)$.

Definition 7 (Poisson on \mathbb{R}^+). N(s,t) = N(t) - N(s) is a Poisson rv with mean $(t-s)\lambda$. For disjoint intervals, say $\{I_n\}$, $N(I_j)$, $N(I_k)$ are independent for all j, k.

9 Simple Random Walk

Definition 8 (Stopping time). τ taking values in $\mathbb{Z}^+ \cup \{+\infty\}$ such that for all $n, \{\tau \leq n\} \in \mathcal{F}_n$.

Proposition 1. τ is a stopping time iff for all $n, \{\tau = n\} \in \mathcal{F}_n$

Theorem 26 (Wald's first equation). $\{X_n\}$ IID with $\mathbb{E}|X_1| < \infty$. τ a stopping time with $\mathbb{E}\tau < \infty$, then

$$\mathbb{E}S_{\tau} = \mathbb{E}\tau \mathbb{E}X_1 \tag{40}$$

Theorem 27 (Wald's second equation). $\{X_n\}$ IID with $\mathbb{E}X_n = 0$ and $Var(X_1) < \infty$. If $\mathbb{E}\tau < \infty$, then

$$\mathbb{E} \left(S_{\tau} \right)^2 = Var(X_1) \mathbb{E} \tau \tag{41}$$

Theorem 28 (Wald's third equation). $\{X_n\}$ IID with $\mathbb{E}e^{\theta X_1} = \phi(\theta) < \infty$. If τ is a.s. bounded by L, that is

$$\phi(\theta)^{-n} e^{\theta S_n} \mathbf{1}_{\tau \ge n} \le L \tag{42}$$

then

$$\mathbb{E}\left[\phi(\theta)^{-\tau}e^{\theta S_{\tau}}\right] = 1 \tag{43}$$

10 Common Distribution

(i) Bernoulli: $\mathbb{P}(X=1) = p, \mathbb{E}X = \mathbb{E}X^k = p, \text{Var}X = p(1-p), \phi(t) = 1 - p + pe^{it}$

(ii) Binomial:
$$(n,p), \mathbb{P}(X=i) = \binom{n}{i} p^i (1-p)^{n-i}, \mathbb{E}X = np, \text{Var}X = np(1-p), \phi(t) = (1-p+pe^{it})^n$$

- (iii) Geometric: $(p), \mathbb{P}(X=i) = p(1-p)^{i-1}, \mathbb{E}X = \frac{1}{p}, \text{Var}X = \frac{1-p}{p^2}, \phi(t) = \frac{pe^{it}}{1-(1-p)e^{it}}$
- (iv) Poisson: $(\lambda), \mathbb{P}(X = i) = e^{-\lambda} \lambda^i / i!, \phi(t) = \exp\left[\lambda(e^{it} 1)\right]$
- (v) Uniform: $x \in (a, b), f(x) = \frac{1}{b-a}, \mathbb{E}X = \frac{a+b}{2}, \text{Var}X = \frac{(b-a)^2}{12}, \phi(t) = \frac{e^{itb} e^{ita}}{it(b-a)}$
- (vi) Normal: $(\mu, \sigma^2), x \in \mathbb{R}, f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}, \mathbb{E}X = \mu, \text{Var}(X) = \sigma^2, \phi(t) = \exp(i\mu t \sigma^2 t^2/2)$
- (vii) Exponential: $\lambda, x > 0, f(x) = \lambda e^{-\lambda x}, \mathbb{E}X = \frac{1}{\lambda}, \text{Var}X = \frac{1}{\lambda^2}, P(X > x) = e^{-\lambda x}, \phi(t) = \frac{1}{1 it\lambda^{-1}}$

(viii) Cauchy:
$$x \in \mathbb{R}, f(x) = \frac{1}{\pi(1+x^2)}$$
, moment DNE, $\phi(t) = e^{-|t|}$

(ix) Compound Poisson c.f.: $S = \sum_{i=1}^{N} X_i, N \sim \text{Poisson}(\lambda)$ and $X_1 \sim \phi(t)$, then $S \sim \exp(\lambda(\phi(t) - 1))$

11 Trickery

- (i) X is a continuous random variable with density f, then $\mathbb{E}(X-\mu)^k = \int (x-\mu)^k f(x) dx$
- (ii) $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
- (iii) If X, Y are independent, X, Y has pdf f, g respectively, then X + Y has pdf h with $h(z) = \int f(x)g(z x)dx$
- (iv) Suppose X has pdf f or PMF P_n , then $\phi(t) = \mathbb{E}e^{itX} = \int e^{itx} f dx$ or $\sum e^{itn} P_n$