
1 Convergence and inequalities

Theorem 1 (Fubini’s theorem). Let (Ω,F ,P) be the n-fold product of Ω1, ...,Ωn. If *either* f ≥ 0 or∫
|f |dµ <∞, then ∫

fdP =

∫
Ωn

f...(

∫
Ω1

fdP1)...fdPn (1)

Theorem 2 (Bounded convergence theorem, Durrett, p26). Let E be a set with µ(E) < ∞. Suppose fn
vanishes on Ec, |fn(x)| ≤M , and fn → f in measure. Then

lim
n→∞

∫
fndµ =

∫
fdµ (2)

Theorem 3 (Fatou’s lemma). If fn ≥ 0 then∫ (
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
fndµ (3)

Theorem 4 (Monotone convergence theorem). If fn ≥ 0 and fn ↑ f , then∫
fndµ ↑

∫
fdµ (4)

Theorem 5 (Dominated convergence theorem). If fn → f a.e., |fn| ≤ g for all n, and g is integrable,
then ∫

fndµ→
∫
fdµ (5)

Theorem 6 (Thm 1.6.8, Durrett). Suppose Xn → X a.s. Let g, h be continuous function with

(i) g ≥ 0 and g(x) → ∞ as |x| → ∞

(ii) |h(x)|
|g(x)| → 0 as |x| → ∞

(iii) Eg(Xn) ≤ K <∞ for all n

Then

Eh(Xn) → Eh(X) (6)

Theorem 7 (Markov’s inequality). Let (Ω,F ,P) be a probability space, let X be a random variable on this
space, and let A ⊆ R be any Borel-measurable set. Then for any non-negative real function ϕ, we have a
bound:

P(X ∈ A) ≤ Eϕ(X)

infx∈A ϕ(x)
(7)

and for nonnegative X

P(X ≥ a) ≤ EX
a

(8)

Theorem 8 (Chebyshev’s inequality).

P (|X − b| ≥ a) ≤ E (X − b)2

a2
(9)
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Lemma 1 (Kolmogorov’s maximal inequality). Suppose {Xn} are independent with mean zero and finite
variance. Then

P
(
max
1≤k≤n

|Sk| ≥ x

)
≤ x−2Var(Sn) (10)

Theorem 9 (Kolmogorov’s Three Series Theorem). {Xn} independent. A > 0 and define truncation
Yn = Xn1|Xn|≤A. For

∑∞
n=1Xn to converge a.e, it needs to satisfy:

(i)
∑∞

n=1 P (|Xn| > A)

(ii)
∑∞

n=1 EYn

(iii)
∑∞

n=1VarYn

Theorem 10 (Jensen’s inequality). For convex ϕ,

E[ϕ(X)] ≤ ϕ(EX) (11)

as long as both expectations exist.

Theorem 11 (Hölder’s inequality). For 1/p+ 1/q = 1,

E[XY ] = ||XY ||1 ≤ ||X||p||Y ||q (12)

Corollary 1 (Cor 3.5 notes). X is random variable, f(X, t) is differentiable in t, and E [f(X, t)] and

E
∣∣∣∂f(X,t)

∂t

∣∣∣ are bounded and continuous for t in an interval containing t0, then

d

dt
Ef(X, t) = E

∂

∂t
f(X, t) (13)

Theorem 12 (Change of density, notes p.29). f : Rn → Rn smooth and invertible. Suppose (X1, · · · , Xn)
has law µ with density g, what is density of f(X1, · · · , Xn) with law ν? What is density of push forward ν
of µ?

For each A, we have µ(A) =
∫
A
gdm, by changing coordinates to Y = f(X), we have

ν(B) = µ
(
f−1B

)
=

∫
f−1B

gdm =

∫
B

g ◦ f−1|J |−1dm (14)

where |J |−1 is the inverse of the determinant of df at f−1(Y ), so that

|J |−1g ◦ f−1 (15)

is the density of the push-forward.

2 Modes of Convergence

Definition 1 (a.s). P (limn→∞Xn = X) = 1

Definition 2 (p). limn→∞ P (|Xn −X| > ϵ) = 0

Definition 3 (d). limn→∞ Fn(x) = F (x)

E A.S. P D

∫
|fn|<∞×

DCT, 1[n,n+1]×
subseq, 1

[n−2k

2k
, n−2k+1

2k
]
×

BCT
Yn→Y a.s.,Xn,Y =⇒ Yn,Y
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2.1 Counter Examples

We have gathered the following counterexamples:

(i) Convergence in probability ≠⇒ almost surely: Typewriter sequence, which is

fn(x) = 1[
n−2k

2k
,n−2k+1

2k

] (16)

with 2k ≤ n < 2k+1. fn tends to zero in probability, but not almost everywhere.

(ii) Convergence a.s. ≠⇒ E converge:

(1) 1n,n+1. Observe that

lim
n→∞

1n,n+1 = 0 a.e. and 1n,n+1 ≤ 1 (17)

and

lim
n→∞

E1n,n+1 = 1 ↛ 0 (18)

(2) n1[0, 1n ]
. Observe that

lim
n→∞

fn = 0 a.e. (19)

but

lim
n→∞

En1[0, 1n ] = 1 ̸=
∫
fdx = 0 (20)

(iii) Three series, violated only (3):
∑

±n−α, independent sum of mean zero powers. Note that since
variance of n-th term is n−2α, then summable iff α > 1/2.

(iv) LDP does not work: Sn sum of Cauchy IID, does {Sn/n} satisfy LDP? No, interval J has empty
interior. Sn/n has the same law as a single Cauchy variable, then there is a trivial LPD with rate
function identically zero.

(v) Convergence in distribution only at points CDF is continuous: X random varaible and Xn = X+1/n.
We must have Xn → X. However, Fn ↛ F , where Fn(x) = P(Xn ≤ x) = F (x − 1/n), so Fn(x) →
F (x−).

(vi) Convergence in distribution does not imply pair converge in distribution: Xn = X, Yn = Y and X, Y
IID, then Xn ⇒ X, Yn ⇒ Y , but (Xn, Yn) ⇒ (X, Y ) = (X,X), contradiction.

3 Law of large number (weak + strong)

Theorem 13 (Best WLLN). {Xn} IID with tP(X1 > t) → 0 as t→ ∞. Sn = ΣXi *but* µn = EX11X1<n.
Then, Sn/n− µn → 0 in probability.

Theorem 14 (W/SLLN). {Xn} IID with E|X1| <∞. Denote Sn =
∑n

k=1Xk and µ = EX1, then

Sn

n
→ µ (21)

in probability/almost surely. (WLLN requires VarXn <∞)

3

https://math.stackexchange.com/questions/1412091/the-typewriter-sequence


Proof. SLLN: 1. Instead of triangular array, truncate Xn at different value; |Xn| = n, 2.pass subsequence
in order for upper bounds on P (|S/n− µ| > ϵ) to be summable in n.,3. Can’t do this with nj = jα, but
doable with nj = (1 + δ)j for δ small. 4. Similar to proof of quantitative Borel-Cantelli, apply sandwich
trick as long as Sn increases.,5. get a sandwiched SLLN between 1− δ, 1 + δ with δ > 0 small.

WLLN/L2: E(Sn/n) = µ, then E
(
Sn

n
− µ

)2
= Var

(
Sn

n

)
= 1

n2

∑n
j=1VarXj =

C
n
→ 0 =⇒ converge in

probability via E|Zn|p ≥ ϵpP (|Zn| ≥ ϵ).

Theorem 15 (Borel-Cantelli Lemma I). If
∑

n P(An) <∞, then P(Ani.o.) = 0.

Theorem 16 (Borel-Cantelli Lemma II). {An} independent. If
∑

n P(An) = ∞, then P(Ani.o.) = 1.

Theorem 17 (Borel-Cantelli Lemma II-quantitative). {An} pairwise independent. If
∑

n P(An) = ∞,
then

Σn
11Ak

Σn
1P(Ak)

→ 1 (22)

almost surely as n→ ∞.

Theorem 18 (HW Borel-Cantelli). If P(An) < 1 for all n and P (∪nAn) = 1, then P (An i.o.) = 1.

4 Large Deviation

The range Sn > an with a > µ fixed and n → ∞ is called a large deviation. If E exp{λX1} exists for
some λ > 0, then:

1. Compute an upper bound, depending on λ, using Markov’s inequality

2. Optimize in λ, which for some positive function h, it yields

P(Sn > an) ≤ exp(−h(a)n) (23)

Sharp in the sense that

n−1 logP(Sn > an) → h(a) (24)

3. Find an event. whose probability we can compute, contained in the event {Sn > an} as the lower bound
for P(Sn > an)

Formally, we have

P(Sn > an) ≤ e−λanEeλSn (25)

1

n
logP(Sn > an) ≤ −λa+ ψ(λ) (26)

with ψ(λ) = log ϕ(λ) = logEeλX1 . Optimize over λ to get λ0(a), define the rate function I ≥ 0 by

I(a) = aλ0(a)− ψ(λ0(a)) = sup
λ
aλ− ψ(λ) (27)

It leads to the final result

1

n
logP(Sn > an) ≤ −I(a) (28)

lim inf
n→∞

1

n
logP(Sn > an) = −I(a) (29)
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5 Central Limit Theorem

Theorem 19 (CLT for IID). {Xn} IID with EX1 = µ,Var(X1) = σ2 ∈ (0,∞). Then

Sn − nµ√
σ2n

=⇒ χ (30)

Theorem 20 (Lindeberg-Feller CLT). {Xn,k : 1 ≤ k ≤ n < ∞} triangular array, with indenepdence
between row. Assume mean zero and

(i)
∑n

k=1 EX2
n,k → σ2 > 0

(ii) limn→∞
∑n

k=1 EX2
n,k1|Xn,k|>ϵ = 0

Then Sn =
∑n

k=1Xn,k → σχ in distribution.

6 Total Variation distance

Definition 4 (TVD). Let µ, ν be measure on (Ω,F), then

∥µ− ν∥TV = sup
A∈F

µ(A)− ν(A) (31)

Remark 1. If Ω is countable, say Z+ ∪ {0}, then

∥µ− ν∥TV =
∑

x:µ(x)>ν(v)

µ(x)− ν(x) (32)

=
1

2

∑
x

|µ(x)− ν(x)| (33)

and note that if p is the mean (not probability) for each variable, then

∥Ber(p)− Pois(p)∥TV = p(1− e−p) ≤ p2 (34)

Lemma 2. µ, ν are measures, then push forward measures µf = µ ◦ f−1 and νf satisfy ∥µf − νf∥TV ≤
∥µ− ν∥TV . If µi, νi are measures on (Ωi,Fi), then

∥µ1 ∗ µ2 − ν1 ∗ ν2∥TV ≤ ∥µ1 − ν1∥+ ∥µ2 − ν2∥ (35)

7 Characteristic functions

Definition 5. We say that a family {µα : α ∈ A} of probability measures on a space Ω is tight if for every
ϵ > 0 there is a compact set K such that µα(K

c) < ϵ simultaneously for every α ∈ A.

Theorem 21 (Equicontinuity iff tightness). {µα} with corresponding {ϕα}. Then {µα} is tight iff {ϕα}
is equicontinuous at zero, i.e. for all ϵ > 0,∃δ > 0 s.t. simultaneously for all α, we have |ϕα(t)− 1| < ϵ if
|t− 0| < δ.

Theorem 22. A family of measures is tight if and only if every sequence of measures has a sub-sequential
limit in distribution.

Definition 6. The characteristic function ϕ of a random variable X whose law µ has cdf F is the function
t 7→ EeitX . It has the following properties:
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(i) ϕ(t) = 0, but t ̸= 0 implies random variable is discrete

(ii) ϕ(0) = 1, |ϕ(t)| ≤ 1.

(iii) ϕF∗G = ϕF · ϕG

Theorem 23 (Inversion formula). µ, ϕµ, then

µ(a, b) +
1

2
µ{a, b} =

1

2π
lim
T→∞

∫ T

−T

e−ita − e−itb

it
ϕµ(t)dt (36)

Remark 2. In discrete case, we have

P(X = n) = ⟨ϕ, ψn = einx⟩ = 1

2π

∫ 2π

0

ϕ(x)einxdx (37)

i.e., suppose we want to find P(X = n) for some discrete random variable, then we would compute ⟨ϕ, einx⟩.
If ϕ is integrable, i.e.,

∫
|ϕ(t)|dt <∞, then µ has continuous density

f(y) =
1

2π

∫
R
ϕ(t)e−itydt (38)

Theorem 24 (Continuity theorem). {µn} with c.f ϕn, then

(i) µn → µ in distribution for some µ, then ϕn(t) → ϕ∞(t) pointwise, where ϕ∞ is the characteristic
function of µ.

(ii) If ϕn → ϕ pointwise for some ϕ that is continuous at zero, then µn → µ in distribution where µ ∼ ϕ.

8 Poisson process

Theorem 25 (Law of rare events). For each n, let Xn,m, 1 ≤ m ≤ n be independent random variables with

P (Xn,m = 1) = pn,m, p (Xn,m = 0) = 1− pn,m (39)

Suppose

(i)
∑n

m=1 pn,m → λ ∈ (0,∞)

(ii) max1≤m≤n pn,m → 0

then Sn ⇒ Z, where Z ∼ Poisson(λ).

Definition 7 (Poisson on R+). N(s, t) = N(t) − N(s) is a Poisson rv with mean (t − s)λ. For disjoint
intervals, say {In}, N(Ij), N(Ik) are independent for all j, k.

9 Simple Random Walk

Definition 8 (Stopping time). τ taking values in Z+ ∪ {+∞} such that for all n, {τ ≤ n} ∈ Fn.

Proposition 1. τ is a stopping time iff for all n, {τ = n} ∈ Fn

Theorem 26 (Wald’s first equation). {Xn} IID with E|X1| <∞. τ a stopping time with Eτ <∞, then

ESτ = EτEX1 (40)
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Theorem 27 (Wald’s second equation). {Xn} IID with EXn = 0 and Var(X1) <∞. If Eτ <∞, then

E (Sτ )
2 = Var(X1)Eτ (41)

Theorem 28 (Wald’s third equation). {Xn} IID with EeθX1 = ϕ(θ) <∞. If τ is a.s. bounded by L, that
is

ϕ(θ)−neθSn1τ≥n ≤ L (42)

then

E
[
ϕ(θ)−τeθSτ

]
= 1 (43)

10 Common Distribution

(i) Bernoulli: P(X = 1) = p,EX = EXk = p,VarX = p(1− p), ϕ(t) = 1− p+ peit

(ii) Binomial: (n, p),P(X = i) =
(
n
i

)
pi(1− p)n−i,EX = np,VarX = np(1− p), ϕ(t) = (1− p+ peit)

n

(iii) Geometric: (p),P(X = i) = p(1− p)i−1,EX = 1
p
,VarX = 1−p

p2
, ϕ(t) = peit

1−(1−p)eit

(iv) Poisson: (λ),P(X = i) = e−λλi/i!, ϕ(t) = exp [λ(eit − 1)]

(v) Uniform: x ∈ (a, b), f(x) = 1
b−a

,EX = a+b
2
,VarX = (b−a)2

12
, ϕ(t) = eitb−eita

it(b−a)

(vi) Normal: (µ, σ2), x ∈ R, f(x) = 1√
2πσ

e−(x−µ)2/2σ2
,EX = µ,Var(X) = σ2, ϕ(t) = exp (iµt− σ2t2/2)

(vii) Exponential: λ, x > 0, f(x) = λe−λx,EX = 1
λ
,VarX = 1

λ2 , P (X > x) = e−λx, ϕ(t) = 1
1−itλ−1

(viii) Cauchy: x ∈ R, f(x) = 1
π(1+x2)

, moment DNE, ϕ(t) = e−|t|

(ix) Compound Poisson c.f.: S =
∑N

i=1Xi, N ∼ Poisson(λ) and X1 ∼ ϕ(t), then S ∼ exp (λ(ϕ(t)− 1))

11 Trickery

(i) X is a continuous random variable with density f , then E (X − µ)k =
∫
(x− µ)k f(x)dx

(ii) n! ∼
√
2πn

(
n
e

)n
(iii) If X, Y are independent, X, Y has pdf f, g respectively, then X+Y has pdf h with h(z) =

∫
f(x)g(z−

x)dx

(iv) Suppose X has pdf f or PMF Pn, then ϕ(t) = EeitX =
∫
eitxfdx or

∑
eitnPn
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