Math 602 Final Review Sheet

Niuniu Zhang

September 10, 2023

1. Abelian groups

- Every finitely generated abelian group G is isomorphic to a finite direct sum of cyclic groups, each of which is either infinite or of order a power of a prime.
- $|G|=n \Longrightarrow \exists H \subset G,|H|=m, \forall m \mid n$

2. Sylow Theorem

- (Cauchy): If G finite group, $p||G|$, then $\exists g \in G$ with $| g \mid=p$.
- (p-groups): G is a p-groups iff $|G|=p^{n}$.
- The center of p-group is non-trivial.
- (First Sylow): $|G|=p^{n} m$, with $(p, m)=1$, then G contains a Sylow p-subgroup.
$-|H|=p^{n} \Longleftrightarrow H$ Sylow
$-\exists g \in G, g H g^{-1}$ Sylow
- Only one Sylow P, then $P \unlhd G$
- (Second Sylow): If H is a p-subgroup of G, and P Sylow, then there exists $x \in G$ such that $H \subset x P x^{-1}$. Any two Sylow are conjugate.
- (Third Sylow): Number of Sylow p-subgroups, say $s, s \| G \mid$, and $s=k p+1$.

3. Classification

- p, q prime with $p>q$. If $q \nmid p-1$, then for all $|G|=p q$, we have $G \cong C_{p q}$. If $q \mid p-1$, then either $G \cong C_{p q}$ or $G \cong K$, non abelian generated by $c, d \in K$ that

$$
|c|=p,|d|=q ; \quad d c=c^{s} d, s \not \equiv \quad \bmod p, s^{q} \equiv 1 \quad \bmod p
$$

- p odd prime, then $|G|=2 p$ is isomorphic either to $\mathbb{Z}_{2 p}$ or D_{p}.
- Every group of order p^{2} is abelian.
- A group of order p^{2} is either cyclic, or the product of two cyclic group of order p.
- For every $n \geq 5$, the alternating group A_{n} is a simple group.
- $|G|=8 \Longrightarrow G \cong Q_{8}$ or D_{4}.
- Every group of order 15 is Cyclic.
- $|G|=6 \Longrightarrow G \cong C_{6}, G \cong S_{3} \cong D_{3}$.

4. Nilpotent: A group G is nilpotent if $Z_{n}(G)=G$ for some n.

- $Z(G)$ is the center of G, so that $Z(G) \unlhd G$.
- $Z_{0}(G)=1, Z_{1}(G)=G, Z_{2}(G)=Z(G / Z(G)), \ldots, Z_{i+1}(G) / Z_{i}(G)=Z\left(G / Z_{i}(G)\right)$
- $Z_{0}(G) \leq Z_{1}(G) \leq Z_{2}(G) \leq \cdots \leq Z_{c}(G)=G$
- Every p-group is nilpotent \Longrightarrow Every Abelian group is nilpotent
- The \oplus of a finite number of nilpotent groups is nilpotent.
- G nilpotent iff it is the direct product of its Sylow subgroups.
- $Z\left(D_{n}\right)=1$ if n odd, equals $\left\{1, r^{\frac{n}{2}}\right\}$ otherwise.

5. Solvable: A group G is solvable if G has a series of subgroups

$$
1=H_{0} \subset H_{1} \subset H_{2} \subset \cdots \subset H_{k}=G
$$

where, for each $0 \leq i<k, H_{i} \unlhd H_{i+1}$ and H_{i+1} / H_{i} Abelian.

- Every nilpotent group is solvable.
- S_{n} is not solvable for $n \geq 5$.
- (Feit-Thompson): Every finite G of odd order is solvable.
- (Burnside): If $|G|=p^{a} q^{b}$, then G is solvable.
- $|G|=p q r$ and p may equals q, then G solvable.
- (Hall): For all $p,|G|=p^{a} m, G$ has a subgroup of order $m \Longrightarrow G$ solvable.

6. Short Exact Sequence:

$$
1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1 \quad H \cong G / N
$$

is called short exact sequence. G is an extension of H by N.

- Semi

